Design characteristics of symmetrical semicircle-corrugated channel on heat transfer enhancement with nanofluid

2019 ◽  
Vol 151 ◽  
pp. 236-250 ◽  
Author(s):  
Raheem K. Ajeel ◽  
W.S.-I.W. Salim ◽  
Khalid Hasnan
2019 ◽  
Vol 392 ◽  
pp. 189-199
Author(s):  
Rabia Ferhat ◽  
Ahmed Zine Dinne Dellil ◽  
M. Kamal Hamidou

The objective of this study is to give the designer an appreciation of the heat transfer enhancement in turbulent flows through corrugated channels in a heat plate exchanger. Precisely, the influence of a new technic named the artificial roughness is probed on corrugated walls, with their variable wall amplitudes for assessing the effectiveness of the heat exchange. For that purpose, a numerical simulation approach is adopted. The rectangular, triangular, trapezoidal and sinusoidal corrugated wall and artificial roughness wall shapes are investigated, in order to determine the optimal wall profile resulting in significance increase in the heat exchange process with a minimum friction loss. The numerical results are presented in the form of isotherms, streamlines, contour, Nusselt number (Nu) and friction coefficient (Cf) using commercial software ANSYS- Fluent where the Reynolds number is in the range from 3 000 to 12 000. Our simulations reveal that the sinusoidal-corrugated channel has the highest heat transfer enhancement followed by rectangular, triangular and trapezoidal-corrugated channel. In addition, introduction of artificial roughness in the wavy channel induces stronger secondary flow which makes the flow three-dimensional and improve the heat transfer by a maximum 40% at a Reynolds number equal to 12 000. This may indicate benefits for designing heat plate compact exchangers capable of higher performances in the turbulent flow regimes.


Sign in / Sign up

Export Citation Format

Share Document