pulsating flow
Recently Published Documents


TOTAL DOCUMENTS

749
(FIVE YEARS 125)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Ahmad Faryami ◽  
Adam Menkara ◽  
Carolyn Harris ◽  
Daniel Viar

Background: The flow of physiologic fluids through organs and organs systems is an integral component of their function. The complex fluid dynamics in many organ systems are still not completely understood, and in-vivo measurements of flow rates and pressure provide a testament to the complexity of each flow system. Variability in in-vivo measurements and the lack of control over flow characteristics leave a lot to be desired for testing and evaluation of current modes of treatments as well as future innovations. In-vitro models are particularly ideal for studying neurological conditions such as hydrocephalus due to their complex pathophysiology and interactions with therapeutic measures. The following aims to present the reciprocating positive displacement pump, capable of inducing pulsating flow of a defined volume at a controlled beat rate and amplitude. While the other fluidic applications of the pump are currently under investigation, this study was focused on simulating the pulsating cerebrospinal fluid production across profiles with varying parameters. Methods: Pumps were manufactured using 3D printed and injection molded parts. The pumps were powered by an Arduino-based board and proprietary software that controls the linear motion of the pumps to achieve the specified output rate at the desired pulsation rate and amplitude. A range of 0.01  to 0.7  was tested to evaluate the versatility of the pumps. The accuracy and precision of the pumps’ output were evaluated by obtaining a total of 150 one-minute weight measurements of degassed deionized water per output rate across 15 pump channels. In addition, nine experiments were performed to evaluate the pumps’ control over pulsation rate and amplitude. Results: volumetric analysis of a total of 1200 readings determined that the pumps achieved the target output volume rate with a mean absolute error of -0.001034283  across the specified domain. It was also determined that the pumps can maintain pulsatile flow at a user-specified beat rate and amplitude.   Conclusion: The validation of this reciprocating positive displacement pump system allows for the future validation of novel designs to components used to treat hydrocephalus and other physiologic models involving pulsatile flow. Based on the promising results of these experiments at simulating pulsatile CSF flow, a benchtop model of human CSF production and distribution could be achieved through the incorporation of a chamber system and a compliance component


2021 ◽  
Vol 2119 (1) ◽  
pp. 012020
Author(s):  
V M Molochnikov ◽  
N I Mikheev ◽  
A N Mikheev ◽  
A A Paereliy ◽  
A E Goltsman

Abstract Experimental setup is described. Pulsating flow in a smooth channel, and steady and pulsating flows at a bifurcation section simulating the distal end of an artery anastomosis at different flow rates in the main and outflow channels are studied. Indications of laminar-turbulent transition are observed in the near-wall region of the smooth channel. Mechanisms of turbulization of the near-wall region in the pulsating flow are suggested. Vortex flow structure in the bifurcation section is analyzed.


Energy ◽  
2021 ◽  
pp. 122776
Author(s):  
Wujie Zhang ◽  
Fubin Yang ◽  
Hongguang Zhang ◽  
Xu Ping ◽  
Dong Yan ◽  
...  

2021 ◽  
Vol 56 (6) ◽  
pp. 799-811
Author(s):  
A. I. Ageev ◽  
A. N. Osiptsov

A two-dimensional pulsating flow of a viscous fluid in a plane channel whose wall has rectangular microcavities partially or completely filled with a compressible gas is investigated. This problem formulation can clarify the friction reduction mechanism in a laminar sublayer of a turbulent viscous boundary layer flow over a textured stripped superhydrophobic surface containing periodically arranged rectangular micro-cavities filled with gas. It is assumed that the dimensions of the cavities are much smaller than the channel thickness. On the macroscale, the problem of one-dimensional unsteady viscous flow in a plane channel with no-slip conditions on the walls and a harmonic variation of the pressure difference is solved. The solution obtained in this way is used for formulating non-stationary in time and periodic in space boundary conditions for the flow on the scale of a chosen cavity (microscale), with the instantaneous volume of the gas bubble in the cavity depending on the instantaneous pressure over the cavity. The flow on the microscale near a cavity with a gas bubble occurs in the Stokes regime. The numerical solution is obtained using an original version of the boundary element method. A parametric numerical study of the flow field in a pulsating shear flow over a cavity with a compressible gas bubble is performed. The averaged parameters characterizing the effective ‘velocity slip’ of viscous fluid and the friction reduction in a pulsating flow over a stripped superhydrophobic surface are calculated.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012031
Author(s):  
P Kumavat ◽  
S M O’Shaughnessy

Abstract The increasing power density requirements of next generation high performance electronic devices has resulted in ever-increasing heat flux densities which necessitates the evolution of new liquid-based heat exchange technologies. Pulsating flow in single-phase cooling systems is viewed as a potential solution. In this study, an experimental analysis of thermally developed pulsating flow in a rectangular minichannel is conducted. The channel test setup involves a heated bottom section approximated as a constant heat flux boundary. Asymmetric sinusoidal pulsating flows with a fixed flow rate amplitude ratio of 0.9 and Womersley numbers (Wo) of 0.51 and 1.6 are investigated. The wall temperature profiles are recorded using infrared thermography. It is observed that the transverse wall temperature profile is influenced by the sudden velocity variations of such characteristic waveforms. A heat transfer enhancement of 6% was determined for asymmetric flow pulsations of Wo > 1 over the steady flow with a potential augmentation for higher flow rate amplitudes.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012221
Author(s):  
D E Sinitsina ◽  
D K Zaitsev

Abstract This paper reflected preliminary results of physical modeling of pulsating flow in a model of abdominal aortic bifurcation with taking into account the physiological elasticity of the vessel walls. Elastic vessel models were made via molding from a silicone mixture based on Lasil-T4 silicone rubber. The auxiliary study was performed to assess the elastic properties of the silicone mixture and select a necessary composition. The experiment on the pulsating flow in the rigid and elastic models of the abdominal aortic bifurcation was carried out using a blood flow simulator with circulation of blood-emulating fluid. It was revealed that interaction between the elastic model and closed rigid circuit of the blood flow simulator resulted in generation of intense parasite flow oscillations and prevented from getting similar flow conditions for rigid and elastic models. A way to solve the problem is to include dampers with liquid in the hydraulic circuit of the blood flow simulator at the inlet and the outlets of the elastic model.


Author(s):  
Amina Hmoud Alasady ◽  
Mohammad Javad Maghrebi

In industrial-thermal applications, pulsating flow along with carbon-based nanofluids is a well adopted active method, although not in plate heat exchangers (PHEs). The performance of a PHE with carbon-based nanofluids was experimentally evaluated by superimposing pulsating flow along with steady-state flow. The results demonstrated that the use of GNP-water, hybrid GNP/MWCNT-water, and MWCNT-water nanofluids with volume fractions ranging from 0.01% to 0.1% in a steady-state flow led to improved average heat-transfer rates of 1.34, 1.27, and 1.25, respectively. Furthermore, implementation of pulsating flow enhanced the average heat-transfer rate, in comparison to that of the steady-state flow in the same nanofluids, in the range of 10.9%–28.2%, 9%–25.4%, and 7.1%–14.8%, respectively. Pulsating flow in nanofluids improved heat-transfer rate more than it did in pure water owing to the enhancement of the Brownian motion of the suspended carbon-based nanoparticles. In the considered volume fractions from 0.01% to 0.1%, the pulsating flow condition increased the pressure drop by a factor of 1.48, 1.49, and 1.62 for the MWCNT-water, hybrid GNP/MWCNT-water, and GNP-water nanofluids, respectively, in comparison to pure water. The experimental results indicated that the pulsating flow had a more profound influence on the improvement of heat-transfer rate and pressure drop in the case of GNP-based nanofluid than in the others. This could be attributed to the unique platelet shape of the GNP nanoparticles and consequently the higher Brownian motion. The improvement in the heat-transfer rate, obtained through implementation of the pulsating flow condition, outweighed the cost of increase in pressure drop in all the cases. Among the nanofluids considered, the hybrid GNP/MWCNT-water nanofluid exhibited the best overall performance of 1.2.


Sign in / Sign up

Export Citation Format

Share Document