Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms

2016 ◽  
Vol 26 (6) ◽  
pp. 959-966 ◽  
Author(s):  
Zakaria Jalali
Author(s):  
Chunhua Ren ◽  
Linfu Sun

AbstractThe classic Fuzzy C-means (FCM) algorithm has limited clustering performance and is prone to misclassification of border points. This study offers a bi-directional FCM clustering ensemble approach that takes local information into account (LI_BIFCM) to overcome these challenges and increase clustering quality. First, various membership matrices are created after running FCM multiple times, based on the randomization of the initial cluster centers, and a vertical ensemble is performed using the maximum membership principle. Second, after each execution of FCM, multiple local membership matrices of the sample points are created using multiple K-nearest neighbors, and a horizontal ensemble is performed. Multiple horizontal ensembles can be created using multiple FCM clustering. Finally, the final clustering results are obtained by combining the vertical and horizontal clustering ensembles. Twelve data sets were chosen for testing from both synthetic and real data sources. The LI_BIFCM clustering performance outperformed four traditional clustering algorithms and three clustering ensemble algorithms in the experiments. Furthermore, the final clustering results has a weak correlation with the bi-directional cluster ensemble parameters, indicating that the suggested technique is robust.


Author(s):  
Harendra Kumar ◽  
Isha Tyagi

Distributing tasks to processors in distributed real time systems is an important step for obtaining high performance. Scheduling algorithms play a vital role in achieving better performance and high throughput in heterogeneous distributed real time systems. To make the best use of the computational power available, it is essential to assign the tasks to the processor whose characteristics are most appropriate for the execution of the tasks in a distributed processing system. This study develops two algorithms for clustering the heavily-communicating tasks to reduce the inter-tasks communication costs by using k-means and fuzzy c-means clustering techniques respectively. In order to minimize the system cost and response time, an algorithm is developed for the proper allocation of formed clusters to the most suitable processor. The present algorithms are collated with problems in literature. The proposed algorithms are formulated and applied to numerous numerical examples to demonstrate their effectiveness.


Author(s):  
Yuchi Kanzawa ◽  
Sadaaki Miyamoto ◽  
◽  

This study shows that a general regularized fuzzy c-means (rFCM) clustering algorithm, including some conventional clustering algorithms, can be constructed if a given regularizer function value, its derivative function value, and its inverse derivative function value can be calculated. Furthermore, the results of the study show that the behavior of the fuzzy classification function for rFCM at an infinity point is similar to that for some conventional clustering algorithms.


Author(s):  
Dante Mújica-Vargas ◽  
Francisco Javier Gallegos-Funes ◽  
Alberto J. Rosales-Silva ◽  
Rene Cruz-Santiago

Sign in / Sign up

Export Citation Format

Share Document