Effect of local wall thinning on shakedown regimes of pressurized elbows subjected to cyclic in-plane and out-of-plane bending

2015 ◽  
Vol 134 ◽  
pp. 11-24 ◽  
Author(s):  
Amr A. Oda ◽  
Mohamed M. Megahed ◽  
Hany F. Abdalla
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on dynamic behavior and the failure mode of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. The degradation considered in this study was wall thinning, which would be caused in piping systems due to the effects of aging. The degradation condition induced in the piping system model was 50% full circumferential wall thinning at an elbow. The test model was designed to cause out-of-plane bending moment to the thinned-wall elbow by excitation tests. The model without wall thinning was also used in the excitation test to compare the behavior of the piping system models. These models were excited under same input acceleration until fatigue cracks penetrated or an excessive deformation occurred to the models. Through these tests, the vibration characteristic and the process to failure of degraded piping models were obtained for the out-of-plane bending model. This paper describes the dynamic response and failure behavior of piping systems with wall thinning based on the test results.


Author(s):  
Youssef A. F. Hafiz ◽  
Maher Y. A. Younan ◽  
Hany F. Abdalla

In this paper the shakedown limit load for unreinforced locally thinned wall pipe branch connection is determined using the Simplified Technique. Loadings were considered to be internal pressure, as a steady load, with in-plane bending or with out-of-plane bending applied on the branch, as alternating loads. Two locations of local wall thinning were taken; one was on the run pipe opposite to the branch and other on the branch at the maximum tension stress side of the bending moment applied whether in in-plane or out-of-plane situation. Two Finite Element (FE) limit load models were used to verify the modeling of the pipe branch connection with its local wall thinning. First model results were compared with experimental data taken from the literature, and the second results were compared with numerical models taken also from the literature and also compared with API 579 “Fitness For Service” (FFS), part-five, level-two assessment procedure. First and second comparisons lead to good agreement but for API 579 comparison it was found that it is slightly changing with the depth of the local wall thinning but does not reflect the expected behavior of the limit load as the FEA models showed. For the results of the shakedown limit load analysis, Bree diagrams were constructed to show elastic, shakedown and plastic collapse regions. Then, comparison was made to show the effect of the local wall thinning depth and location on previous limits. Finally, the shakedown results were verified using the elastic-plastic ratcheting analysis of API 579, level three assessment and it showed successfully the shakedown, ratcheting and reversed plasticity regions. This verifications and results can prove that the Simplified Technique can be used as a level-three ratcheting assessment in API 579.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


2007 ◽  
Vol 145 (1) ◽  
pp. 63-79 ◽  
Author(s):  
Chang-Sik Oh ◽  
Yun-Jae Kim ◽  
Chi-Yong Park

Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned wall elbow, because the life of piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used in nuclear power plants are supposed to be degraded by the effects of aging. Local wall thinning is one of the defects considered to be caused in piping systems due to the effects of aging, but the failure behavior of thinned wall pipes under seismic load is still not clear. Therefore an experimental and analytical study to clarify the failure behavior of thinned wall pipes is being conducted. In this paper, the experimental results of locally thinned wall elbows under cyclic bending load are described. Displacement-controlled cyclic bending tests were conducted on elbows with local wall thinning. The test models were pressurized to 10MPa with room temperature water and were subjected to in-plane or/and out-of-plane cyclic bending load until their failures. From the tests, the failure modes of the thinned wall elbows were found to be fatigue failure at the flank of the elbow, or fatigue and buckling failure accompanied with ratchet deformation. It was also found that the life of the thinned wall elbow subjected to out-of-plane bending were extremely lower than that of the elbow without wall thinning. The failure modes and fatigue lives of elbows seemed to be affected by a ratchet phenomenon.


Sign in / Sign up

Export Citation Format

Share Document