Failure Behavior of Elbows With Local Wall Thinning Under Cyclic Load

Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used in nuclear power plants are supposed to be degraded by the effects of aging. Local wall thinning is one of the defects considered to be caused in piping systems due to the effects of aging, but the failure behavior of thinned wall pipes under seismic load is still not clear. Therefore an experimental and analytical study to clarify the failure behavior of thinned wall pipes is being conducted. In this paper, the experimental results of locally thinned wall elbows under cyclic bending load are described. Displacement-controlled cyclic bending tests were conducted on elbows with local wall thinning. The test models were pressurized to 10MPa with room temperature water and were subjected to in-plane or/and out-of-plane cyclic bending load until their failures. From the tests, the failure modes of the thinned wall elbows were found to be fatigue failure at the flank of the elbow, or fatigue and buckling failure accompanied with ratchet deformation. It was also found that the life of the thinned wall elbow subjected to out-of-plane bending were extremely lower than that of the elbow without wall thinning. The failure modes and fatigue lives of elbows seemed to be affected by a ratchet phenomenon.

Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned wall elbow, because the life of piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on dynamic behavior and the failure mode of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. The degradation considered in this study was wall thinning, which would be caused in piping systems due to the effects of aging. The degradation condition induced in the piping system model was 50% full circumferential wall thinning at an elbow. The test model was designed to cause out-of-plane bending moment to the thinned-wall elbow by excitation tests. The model without wall thinning was also used in the excitation test to compare the behavior of the piping system models. These models were excited under same input acceleration until fatigue cracks penetrated or an excessive deformation occurred to the models. Through these tests, the vibration characteristic and the process to failure of degraded piping models were obtained for the out-of-plane bending model. This paper describes the dynamic response and failure behavior of piping systems with wall thinning based on the test results.


Author(s):  
Ken Inoue ◽  
Koji Takahashi ◽  
Kotoji Ando ◽  
Seok Hwan Ahn ◽  
Ki Woo Nam ◽  
...  

Monotonic four-point bending tests were conducted using straight pipe specimens 102 mm in diameter with local wall thinning in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classified as local buckling, ovalization, or crack initiation depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.


Author(s):  
Michiya Sakai ◽  
Ryo Morita ◽  
Shinichi Matsuura ◽  
Fumio Inada ◽  
Shigenobu Onishi ◽  
...  

The earthquake-proof safety of piping systems with local wall thinning due to liquid droplet impingement erosion (LDI) was evaluated using a hybrid experiment which has been incorporated a numerical analysis of the whole system with a static loading test of elbow pipe model. Seismic performance effects of wall thinned elbow were clarified by comparing three cases of different thickness elbow models such as no defect, 50% defect and 75% defect. No damage was observed for in-plane and out-of-plane bending of elbows in the 75% condition under a seismic load equal to five times the design basis earthquake required to reach allowable stress level. In addition, torsion buckling occurred and through wall crack penetrated by cyclic loading under eight times large amplitude the above mentioned seismic motion.


2004 ◽  
Vol 126 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Shaking table tests of three-dimensional piping models with degradation were conducted in order to investigate the influence of degradation on dynamic behavior and failure modes of piping systems. The degradation condition induced in the piping models was about 50 percent full circumferential wall thinning at elbows. Four types of models were made for the shaking table tests by varying the location of wall thinning in the piping models. These models were excited under the same input acceleration until the models failed and a leak of pressurized internal water occurred. Through these tests, the change of the vibration characteristics and processes to failure of degraded piping models were obtained. The deformation of the piping models tended to concentrate on the degraded elbows, and the damage was concentrated on the weakest elbow in the piping models. The failure mode of the piping models was a low-cycle fatigue failure at the weakest elbow.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on dynamic behavior and failure modes of piping systems, shaking table tests of 3-D piping models with degradation were conducted. The degradation condition induced in the piping models was about 50% full circumferential wall thinning at an elbow or elbows. By varying the induced parts in the piping model, 4 kinds of models were made for the shaking table tests. These models were excited under the same input acceleration until the models failed and caused leak of pressurized internal water. Through these tests, the change of the vibration characteristic and the process to failure of degraded piping models were obtained. The deformation of the piping models tended to concentrate on the degraded elbows, and therefore the damage concentrated to a weakest elbow in the piping models. The failure mode of the piping models was a low-cycle fatigue failure at the weakest elbow.


Sign in / Sign up

Export Citation Format

Share Document