Influence of pressure die's boosting on forming quality in bending process of thin-walled tube

Author(s):  
Huan Zhang ◽  
Yong Hu
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

2014 ◽  
Vol 81 ◽  
pp. 2177-2183 ◽  
Author(s):  
Xin Xue ◽  
Juan Liao ◽  
Gabriela Vincze ◽  
Jose Gracio

2000 ◽  
Vol 123 (4) ◽  
pp. 430-435 ◽  
Author(s):  
Xi Wang ◽  
Jian Cao

Thin-walled tube bending has found many of its applications in the automobile and aerospace industries. This paper presents an energy approach to provide the minimum bending radius, which does not yield wrinkling in the bending process, as a function of tube and tooling geometry and material properties. A doubly-curved sheet model is established following the deformation theory. This approach provides a predictive tool in designing/optimizing the tooling parameters in tube bending.


Author(s):  
Duanyang Tian ◽  
Xuedao Shu ◽  
Yilun Wei ◽  
Yu Wang

As a core part of the aero engine casing, the thin-walled tube with large diameter usually formed by sheet hydroforming presents high forming precision and forming quality. In this paper, the appropriate hydraulic pressure and blank holder force should be identified to control the wall thickness uniformity of N08811 alloy tube with large diameter. Firstly, the stress-strain curve of this material at room temperature is obtained from deep drawing tests. Subsequently, within the allowable range of springback and wrinkling errors, finite element simulation and the uniform test design are performed to investigate the effect of the multi-level process parameters on the thickness uniformity of the higher D/t ratio tube. Results show that the blank holder force and the hydraulic pressure produce significant effects on the wall thickness uniformity. Finally, the regression analysis is further carried out for the computational results from uniform experimental design experiments. The optimized process parameters are then obtained and the wall thickness uniformity of the tube is improved. These results provide a theoretical reference for improving the forming quality of thin-walled tube with large diameter.


Sign in / Sign up

Export Citation Format

Share Document