blank holder force
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Huiting Wang ◽  
Jianfei Kong ◽  
Hongbo Pan ◽  
Jinxiu Fang ◽  
Xiaohui Shen

Abstract This study focus on the effects of the key process parameters during a modified hydrodynamic deep drawing utilizing a combined floating and static die cavity (HDDC). A two-stage hydraulic loading path is recommended in the novel process, and each stage of the hydraulic loading path is a linear loading path with an inflection point. The method to evaluate the wrinkle and forming dimension precision of the formed parts is introduced at first. Then the influence of the key parameters of the two-stage hydraulic loading path as well as the blank holder force on the dimension accuracy and surface quality of the formed parts was studied in detail. The results showed that the influence of the liquid pressure during the second stage is more significant than that in the first stage in hydrodynamic deep drawing utilizing a combined floating and static die cavity. The initial pressure of the second stage and the maximum pressure arriving moment during this stage have a significant impact on the dimensional accuracy of the formed parts, and the smaller initial pressure or the later the maximum pressure of the second stage arrives, the higher the accuracy of the formed part is. Similarly, the influence of the blank holder force in the second stage on the forming accuracy is more significant than that in the first stage.


2021 ◽  
Author(s):  
Zaifang Zhang ◽  
Feng Xu ◽  
Xiwu Sun

Abstract The hydroforming technology can realize overall forming of large storage tank’s bottom, but the quality is affected by many technological parameters. In view of wrinkling and cracking defects of integral storage tank’s bottom in hydroforming, a multi-objective optimization model is established for process parameters include pre-expansion pressure, hydraulic pressure, blank holder force and fillet radius of blank holder. Based on finite element simulation, the surrogate model between process parameters and quality criteria is established using Kriging technique. NSGA-III is used to determine optimal process parameters when storage tank’s bottom reaches targets include minimum wall thickness variations, minimum fracture trend, minimum flange wrinkle and minimum wrinkle trend. Compared with Particle swarm optimization (PSO) algorithm, NSGA-III algorithm is more suitable to solve this optimization problem. The validity of this method and accuracy of the results are verified by simulation experiments.


2021 ◽  
Vol 885 ◽  
pp. 3-9
Author(s):  
Wen Yu Ma ◽  
Jian Wei Yang ◽  
Ye Yao ◽  
Yong Qiang Zhang ◽  
Jun Zhang

Recently the high strength steel has been applied in the automotive more and more widely. In this study, the effect of blank shape on the formability of an automotive part was analyzed. The three kinds of blank shapes were chosen, including a rectangular shaped blank, a blank with two corners cut straightly and a blank with two corners cut in curve. The effect of the variable blank holder force on the formability was studied. The four kinds of variable blank holder force were applied. The blank shape in this part is the blank with two corners cut curve. The results show that the blank with two corners curve is the most suitable. And the blank holder force from 1000 kN to 1500 kN is the most useful for the formability.


2021 ◽  
Author(s):  
Jing Zhou ◽  
Xiaoming Yang ◽  
Baoyu Wang ◽  
Wenchao Xiao

Abstract In this paper, the springback behavior of high strength aluminum alloy 7075 is studied by experiments and finite element (FE) simulation. Firstly, an analytical model is established to predict the springback angles and analyze the springback trend. The springback experimental tests are conducted by using the V-shaped stamping dies. The influence of deformation temperature, punch radius and blank holder force on the springback angles are studied. Finally, An FE simulation model is performed to investigate the deformation characteristics and springback process of the aluminum alloy sheet. The results show that the change of springback angles is direct proportional to the punch radius. The springback angles increase with the decreasing deformation temperature and the increasing blank holder force. The stress relaxation that occurs during the die holding stage is the primary reason of reducing the springback compared with cold stamping. Low blank holder force will cause side wall curl, which results in the deviation of forming size. The FE simulation model considering stress relaxation is capable of precisely predicting the change of springback angles, and the simulation results exhibit good consistency with the experimental results.


Author(s):  
AH Bamdad ◽  
R Hashemi

Wrinkling, which is primarily caused by insufficient blank holder force, is a significant issue that induces inconsistencies in forming parts, particularly in the deep drawing process. In this article, an investigation of the wrinkling in the deep drawing process of two-layer sheets is performed through an analytical approach, numerical method, and experimental tests. Increasing in the blank holder force, the process is under control by the proposed algorithm. Consequently, it aims to find the minimum required blank holder force to avoid wrinkling. The energy technique is utilized to predict the wrinkling in the analytical approach. Similarly, finite element simulations are implemented to investigate the effect of forming parameters on wrinkling. The experimental tests are performed to verify the analytical and numerical results. The impact of the material properties and stacking sequences (lay-up) on blank holder force and forming force are studied. Results show that the optimum blank holder force is dependent on the material properties, blank geometry, and layer stacking sequences. Also, a good agreement between analytical, numerical, and experimental results is achieved.


2021 ◽  
Vol 22 ◽  
pp. 18
Author(s):  
Jinbo Li ◽  
Xiaohui Chen ◽  
Xianlong Liu

In this paper, local-thickened plates are adopted for aluminum alloy square cups stamping with relatively low values of residual stresses and small radius at the bottom corner. By utilizing numerical and experimental methods, the effects of process parameters and plate local thickening on the residual stress distribution of hot stamped aluminum alloy square cups are studied. Furthermore, the influence of plate local thickening on the radius of bottom corner of square cups is also investigated. The results showed that with an increase in the forming temperature, blank holder force and die corner radius, residual stresses in hot stamped square cups can be reduced. The same effect can be achieved by decreasing the die entrance radius. As opposed to the flat plates, using local-thickened plates can not only reduce the residual stresses values in hot stamped square cups, but also decrease the radius at the bottom corner of square cups. When the optimized thickening scheme of plate is used, the smaller radius at the bottom corner, the lower residual stresses in the square cups are obtained.


Sign in / Sign up

Export Citation Format

Share Document