forming quality
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 81)

H-INDEX

10
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Jiansheng Xia ◽  
Jun Zhao ◽  
Shasha Dou

There are many typical symmetric large plastic deformation problems in aluminum alloy stamping. Warm stamping technology can improve the formability of materials and obtain parts with high-dimensional accuracy. Friction behavior in the stamping process is significant for the forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of forming defects. It is hard to obtain a unified and precise friction model through simple experiments due to the complicated contact conditions. To explore the effect of friction behavior on the forming quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different process parameters were carried out using a high-temperature friction tester CFT-I (Equipment Type), including temperatures, the interface load, and sliding speeds. The variation curves of the friction coefficient with various parameters were obtained and analyzed. The results show that the friction coefficient increases with temperature and decreases with the sliding speed and load. Then, the influences of process parameters on the surface morphology of the samples after friction were observed by an optical microscope; adhesive wear occurred when the temperature increased, and the surface scratch increased and deepened with the increase in the load. Finally, the friction coefficient models of the speed and load were established by analyzing the data with Original software. Compared with the experimental and the finite element analysis results of the symmetrical part, the errors of the velocity friction model in thickness and springback angle are less than 4% and 5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore, those coefficient models can effectively improve the simulation accuracy of finite element software.


Author(s):  
Qihan Li ◽  
Chuanwei Xu ◽  
Song Gao ◽  
Xiaoheng Han ◽  
Fenglei Ma ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Cheng Cheng ◽  
Chao Pan ◽  
Xueshan Bai ◽  
Chunmei Liu ◽  
Xunzhong Guo

Abstract The non-uniform distribution of the mechanical properties of welded tube would affect the plastic deformation behavior of tube during the free bending process. To explore the influence of weld position on the forming quality and axis dimensional accuracy of welded tube, the free bending experiment and numerical simulation of welded tube were conducted in this paper. First, the principle of free bending was theoretical deduced and the stress distribution of bent tube was analyzed. Then the hardness test and uniaxial tensile test were conducted to obtain the mechanical properties of weld zone and parent zone of welded tube. The material strength in the weld zone of welded tube is significantly higher than that in the parent zone. Finally, the free bending experiment and numerical simulation with different weld position were carried out, and the influence of weld position on the bending radius, cross-sectional distortion and wall thickness of bent tube was discussed. All these findings advance the insight into the free bending deformation behavior of welded tube and help to improve the forming quality of welded tube and facilitate the application of free bending technology in welded tube.


2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

Author(s):  
Chuandong Chen ◽  
Jicai Liang ◽  
Yi Li ◽  
Ce Liang

In the flexible stretch bending of multi-point roller dies process, the deformation of workpiece is mainly driven by clamps. Therefore, the movement track of clamp has a great influence on the forming effect of workpiece. Y-profile, T-profile, and L-profile are taken as the research objects. Simulation and experiments are carried out with two different movement tracks. The influence of the movement tracks on shape error, springback error, and thickness variation of different profiles is discussed. The experimental results of the three profiles processed by the double-sided forming method are consistent with the simulation results, which proves the accuracy of the numerical simulation. The results show that the movement track has a great influence on shape error. Compared with double-sided forming, one-sided forming can effectively reduce springback error. The two different movement tracks have no obvious influence on thickness change.


2021 ◽  
Vol 904 ◽  
pp. 20-25
Author(s):  
Xian Rui Wang ◽  
Hu Zhu ◽  
Dong Won Jung

The existing double sided incremental forming (DSIF) mostly uses two tools with the same diameter as the upper/lower tools, which is not conducive to improve the forming quality and forming efficiency. In this paper, the influence of the different combination of the upper and lower tool head diameters on the thickness distribution and the contour dimension accuracy of the formed part is studied by using ANSYS / LS-DYNA software and by taking the model with bidirectional convex features as the research object. It is found that the reasonable combination of different diameters of the upper/lower tools based on the characteristics of the parts to be formed can improve the forming quality and forming efficiency.


Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han ◽  
Yiqing Ma ◽  
Peipei Lu ◽  
...  

A systematical work was studied to illustrate the influence of defocusing distance on the forming quality of inner structure fabricated by selective laser melting for Ti-6Al-4V alloy. The relationship between defocusing distance and dimensional accuracy, surface roughness as well as flatness was investigated, finite element analysis (FEA) was used to show the temperature distribution. The results show that defocusing distance not only had an impact on laser energy density, but also showed a significant influence on the surface pressure of the metal powder. Smaller defocusing distance (0.0 mm) accompanied with higher molten pool maximum temperature (3262.96°C), powder melting and splashing at the same time. On the contrary, larger defocusing distance leading to unmelted powder and powder bonding, which influences the forming quality of samples. Dimensional accuracy was less affected in 0.0, 1.0, 2.0 mm defocusing distance (5%), but changed dramatically when it is 3.0 mm (22%). In the same condition, similar variation trend of surface roughness (Ra) and flatness was observed, and varying from 5.1 to 27.3 μm and 0.05 to 0.26 mm, respectively. Simultaneously, the bottom surface is less affected, while the other three sides have the opposite situation. Pores and unmelted powder can be seen on the surface, it is the comprehensive effect of laser energy density and surface pressure. It proves that it is feasible to manufacture inner structure by controlling this process parameter during SLM process, the influence mechanism of defocusing distance on forming quality was also illustrated in this work.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022024
Author(s):  
Chenghong Duan ◽  
Yinzhou Zhang ◽  
Xiangpeng Luo

Abstract 12CrNi2 alloy steel was prepared by Laser Melting Deposition (LMD) technology, and the effect of powder feeding rate on surface quality, internal defects, microstructure, and microhardness of the single track and manufactured part were investigated. The results show that the metallurgical bonding of the single track deteriorates, the surface quality of the manufactured part is improved, the average microhardness of the manufactured part increases, and the number of pores first decreases and then increases with the increase of powder feeding rate. At the lower powder feeding rate, the manufactured parts have larger pore defects, while at the higher powder feeding rate, the manufactured parts have poor fusion defects. The main phase composition of the manufactured parts is ferrite(F), granular bainite (GB), and pearlite(P), and the manufactured part has finer grains at the higher powder feeding rate.


Sign in / Sign up

Export Citation Format

Share Document