A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers

2016 ◽  
Vol 65 ◽  
pp. 12-26 ◽  
Author(s):  
Radia Eldeeb ◽  
Vikrant Aute ◽  
Reinhard Radermacher
Author(s):  
Ece Özkaya ◽  
Selin Aradag ◽  
Sadik Kakac

In this study, three-dimensional computational fluid dynamics (CFD) analyses are performed to assess the thermal-hydraulic characteristics of a commercial Gasketed Plate Heat Exchangers (GPHEx) with 30 degrees of chevron angle (Plate1). The results of CFD analyses are compared with a computer program (ETU HEX) previously developed based on experimental results. Heat transfer plate is scanned using photogrammetric scan method to model GPHEx. CFD model is created as two separate flow zones, one for each of hot and cold domains with a virtual plate. Mass flow inlet and pressure outlet boundary conditions are applied. The working fluid is water. Temperature and pressure distributions are obtained for a Reynolds number range of 700–3400 and total temperature difference and pressure drop values are compared with ETU HEX. A new plate (Plate2) with corrugation pattern using smaller amplitude is designed and analyzed. The thermal properties are in good agreement with experimental data for the commercial plate. For the new plate, the decrease of the amplitude leads to a smaller enlargement factor which causes a low heat transfer rate while the pressure drop remains almost constant.


Author(s):  
Jianchang Huang ◽  
Thomas J. Sheer ◽  
Michael Bailey-McEwan

The heat transfer and pressure drop characteristics of plate heat exchangers were measured, when used as refrigerant liquid over-feed evaporators. The three units all had 24 plates but with different chevron-angle combinations of 28°/28°, 28°/60°, and 60°/60°. R134a flowing upwards was used as the refrigerant, in a counter-current arrangement with water flowing on the other side. Heat transfer and pressure drop measurements were made over a range of mass flux, heat flux and corresponding outlet vapour fractions. The effect of system pressure on the evaporator performance was not evaluated due to the small range of evaporating temperature. Experimental data were reduced to obtain the refrigerant-side heat transfer coefficient and frictional pressure drop. The results for heat transfer showed a strong dependence on heat flux and weak dependence on mass flux and vapour fraction. Furthermore, the chevron angle had a small influence on heat transfer but a large influence on frictional pressure drops. Along with observations that were obtained previously on large ammonia and R12 plate evaporators, it is concluded that the dominating heat transfer mechanism in this type of evaporator is nucleate-boiling rather than forced convection. For the two-phase friction factor, various established methods were evaluated; the homogeneous treatment gives good agreement.


2020 ◽  
Vol 24 (1 Part A) ◽  
pp. 355-365
Author(s):  
Koray Karabulut

Plate heat exchangers have a widespread usage and the simplest parallel plate channel structures. Cross-corrugated ducts are basic channel geometries used in the plate heat exchangers. In this study, the increasing of heat transfer from the cross-corrugated triangular ducts by inserting triangular baffles with different placement angles into the channel upper side and pressure drop have been numerically investigated. Numerical calculations have been carried out to solve Navier-Stokes and energy equations by employing k-? turbulence model as 3-D and steady with ANSYS-FLUENT program. While inlet temperature of the air used as working fluid is 293 K, constant surface temperature values of the the lower corrugated channel walls are 373 K. The height of the baffle and apex angle of the corrugated duct have been taken constant as 0.5 H and 60?, respectively. Investigated Reynolds number range is 1000-6000 while the baffle placement angles are 30?, 45?, 60?, and 90?. Numerical results of this study are within 3.53% deviation with experimental study existed in literature. The obtained results have been presented as mean Nusselt number temperature and pressure variations of the fluid for each baffle angle. The temperature and velocity vector contour distributions have been also assessed for different Reynolds numbers and baffle angles. The value of the Num for the corrugated channel with 60? baffle angle is 8.2% higher than that of the 90? for the Re = 4000. Besides, for Re = 1000 the value of the pressure drop is 39% lower in the channel with 60? baffle angle than that of 90?.


Author(s):  
Foluso Ladeinde ◽  
Kehinde Alabi ◽  
Wenhai Li

Manifold-microchannel combinations used on heat transfer surfaces have shown the potential for superior heat transfer performance to pressure drop ratio when compared to chevron type corrugations for plate heat exchangers (PHE) [1–4]. However, compared with heat transfer enhancements such as intermating troughs and Chevron corrugations, manifold-microchannels (MM) have several times more variables that influence the heat transfer and pressure drop characteristics, including microchannel width, depth, passes, manifold depth, width, and manifold fin thickness. Previous work has reported on the effects of some of the variables, and provides some models for their effects on thermal and hydraulic performance. The current paper presents a genetic algorithm (GA)-based procedure to analyze the implicit effects of some of the manifold-microchannel variables, and compare the performance of manifold-microchannel plate heat exchangers to those using standard Chevron corrugations. The objective of the present work is to evaluate the performance of manifold-microchannel heat transfer enhancements and demonstrate the potential for using GA-based procedure to optimize the heat exchanger. This paper also presents the modifications of the standard GA algorithm when applied to the optimization of MM. The resulting GA procedure is particularly well suited to PHEs for several reasons, including the fact that it does not require continuous variables or functional dependence on the design variables. In addition, the computational effort required for the GA technique in our implementation scales linearly, with a scaling coefficient that is significantly less than one, making it economical to analyze PHEs with several variables with degrees of freedom (DOF) with respect to the fitness function. The results of optimizing a manifold-microchannel plate heat exchanger are presented, and the exchanger’s performance is compared to more conventional PHE of the same volume utilizing chevron corrugations. Finally, results from the empirical procedure presented in this paper for a manifold-microchannel are compared with experimental measurements in Andhare [5].


Sign in / Sign up

Export Citation Format

Share Document