scholarly journals Microstructural topology optimization of viscoelastic materials of damped structures subjected to dynamic loads

2018 ◽  
Vol 147 ◽  
pp. 67-79 ◽  
Author(s):  
Kyeong-Soo Yun ◽  
Sung-Kie Youn

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanpeng Fang ◽  
Lei Yao ◽  
Shuxia Tian ◽  
Junjian Hou

This paper presents microstructural topology optimization of viscoelastic materials for the plates with constrained layer damping (CLD) treatments. The design objective is to maximize modal loss factor of macrostructures, which is obtained by using the Modal Strain Energy (MSE) method. The microstructure of the viscoelastic damping layer is composed of 3D periodic unit cells. The effective elastic properties of the unit cell are obtained through the strain energy-based method. The density-based topology optimization is adopted to find optimal microstructures of viscoelastic materials. The design sensitivities of modal loss factor with respect to the design variables are analyzed and the design variables are updated by Method of Moving Asymptotes (MMA). Numerical examples are given to demonstrate the validity of the proposed optimization method. The effectiveness of the optimal design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to the plates with CLD treatments.



Author(s):  
J. P. Wang ◽  
G. Liu ◽  
S. Chang ◽  
L. Y. Wu

In this paper, topology optimization of gearbox to reduce the radiated noise is studied based on the analysis of modal acoustic contribution and panel acoustic contribution. Firstly, the bearing dynamic loads are obtained by solving the dynamic equations of gear system. Secondly, the vibration of gearbox is calculated using FEM and the radiated noise is simulated using BEM by taking these bearing dynamic loads as excitations. Thirdly, the panel having larger contribution to the sound pressure level (SPL) at a specific field point is found by panel acoustic contribution analysis (PACA), and this panel is taken as design domain. The mode order with larger contribution is determined by modal acoustic contribution analysis (MACA), and making corresponding natural frequency becomes far away from excited frequency is taken as a constraint. Finally, the topology optimization of gearbox is completed using SIMP method, and the ribs are arranged according to the optimization results. The results show that the equivalent sound pressure level at objective field point can be reduced obviously by using this method.







Sign in / Sign up

Export Citation Format

Share Document