static and dynamic loads
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 95)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 1049 ◽  
pp. 108-113
Author(s):  
Nikolay Kurlaev ◽  
Ahmed Soliman Mohamed Sherif ◽  
Nikolay Ryngach

Bellows are a cylindrical shell with a corrugated part, widely used in aviation engineering as a movable sealing element to balance pressure and temperature differences, which ensure continuous and accurate system operation. The use of bellows expansion joints provides reliable and effective protection of pipelines from static and dynamic loads arising from deformations and vibration. Welded-edge bellows are a popular choice for regulating and controlling fuel supply in aircraft devices. The ability of the compensator to perceive deformations is determined by its assigned operating time, which describes how many cycles, and with what amplitude, the bellows compensator perceives without damage. A method for stamping bellows from tubular billets by using magnetic-pulse field in rigid dies, including sequential shaping of corrugations by distributing the internal magnetic pressure with axial movement of the free end of a tubular billet, characterized in that the material of the tubular billet for shaping corrugations is selected in accordance with its relative elongation.


Author(s):  
Çağrı Oruç ◽  
Okan Özdemir

Control arms are subjected to static and dynamic loads in car during their lifetime. Recent increases in loads in which control arms are subjected, are not complying with the low-weight design targets expected by auto makers. In this study, buckling behavior of control arms which have been produced with Si particle reinforced aluminum based metal composite material have been investigated and compared with the performance of control arms that are produced with standard aluminum alloy. The results revealed that mechanical properties of control arm housings with 10% Sip MMC material are lower than standard 6110 alloy due to different process parameters. Elasticity of modulus of control arm housings with 10% Sip MMC material are approximately 7% higher than standard aluminum alloys. Buckling results of control arms with 10% Sip MMC material are around 25% lower that control arms with standard 6110 alloy. Also, a second darker phase was found in the microstructure.


2022 ◽  
Vol 58 (4) ◽  
pp. 222-237
Author(s):  
Costel Iulian Mocanu ◽  
Alin Pohilca ◽  
Liviu Moise ◽  
Daniela Ioana Tudose

Glass reinforced plastic, so called GRP, is a composite material made of glass strands called fibbers woven together to create a flexible fabric. GRP is a lightweight material with many and diverse applications ranging from the manufacture of reservoirs for different liquids to the manufacture of boats, yachts, chairs and even children playground furniture. The behaviour of this material under static and dynamic loads is still raising interest from the scientific community and a large number of researchers. This continued interest is due to the material versatility for different applications depending on its manufacture process that has a significant weigh-in in the material mechanical properties. These resulting mechanical properties need to be carefully analysed and benchmarked prior to using the obtained material in commercial applications. The scope of this research study is to analyse the behaviour of glass reinforced plastic plate panel with reinforcements on one and two directions under static and dynamic loads employing both experimental and numerical methods for results validation. The methods used in this research study for the dynamic loads can also be applied successfully to other composite materials. Additionally, the stress plots have been analysed in iteration in order to ensure the most optimal reinforcement pattern.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Enlai Zhao ◽  
Enyuan Wang ◽  
Zesheng Zang ◽  
Xiaojun Feng ◽  
Rongxi Shen

The complex mechanical environment of deep coal and rock masses leads to obvious changes on their dynamic mechanical properties. However, there are few reports on the dynamic mechanical properties of rocks under the combined action of medium temperature (normal temperature ∼100°C) and static and dynamic loads. In this paper, a dynamic load and temperature combined action Hopkinson pressure bar experimental system is used to experimentally study the impact type of a fine sandstone under temperature conditions of 18°C, 40°C, 60°C, 80°C, and 100°C, an axial static load of 3 MPa, a gas chamber pressure of 0.06 MPa, and a constant temperature time of 4 h. The dynamic characteristics of the change law of the fine sandstone and the energy dissipation characteristics of the load process are analyzed, and the characteristic law of the fine sandstone surface response is analyzed using digital image correlation technology. Our results indicate the following. (1) Under conditions in which the other experimental conditions remain unchanged, the dynamic stress-strain of the fine sandstone presents a bimodal shape with a “rebound” phenomenon. Increasing temperature causes the peak strength of the fine sandstone to increase; however, the relative strength can increase or decrease. The relative increase in the strength is 1.14 MPa (°C) when the temperature increases from 40°C to 60°C, 0.15 MPa (°C) when the temperature increases from 60°C to 80°C, and 0.62 MPa (°C) when the temperature increases from 80°C to 100°C. (2) The digital image correlation results show that, under the action of a dynamic load stress wave, the fine sandstone experiences a displacement vector change on the sample surface; furthermore, under the combined action of the temperature and dynamic and static loads, the fine sandstone experiences macroscopic shear failure. The surface strain in the propagation direction of the stress wave is obviously higher and can even reach values of more than 10 times that of the strain in other directions. (3) From the perspective of energy dissipation, the incident energy, reflected energy, and dissipated energy of the fine sandstone under an impact load have the same change law. After being affected by a dynamic load, the energy rapidly increases to a certain value and then remains relatively stable. The transmitted energy is relatively small and can be approximated as a horizontal line. As the temperature increases, the incident energy, reflected energy, and dissipated energy tend to first decrease and then increase, and most of the incident energy in the fine sandstone is dissipated in the form of reflected waves.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7826
Author(s):  
Long Tang

Fiber-reinforced polymers (FRPs) are materials that comprise high-strength continuous fibers and resin polymer, and the resins comprise a matrix in which the fibers are embedded. As the technique of FRP production has advanced, FRPs have attained many incomparable advantages over traditional building materials such as concrete and steel, and thus they play a significant role in the strengthening and retrofitting of concrete structures. Bridges that are built out of FRPs have been widely used in overpasses of highways, railways and streets. However, damages in FRP bridges are inevitable due to long-term static and dynamic loads. The health of these bridges is important. Here, we review the maintenance and inspection methods for FRP structures of bridges and analyze the advantages, shortcomings and costs of these methods. The results show that two categories of methods should be used sequentially. First, simple methods such as visual inspection, knock and dragging-chain methods are used to determine the potential damage, and then radiation, modal analysis and load experiments are used to determine the damage mode and degree. The application of FRP is far beyond the refurbishment, consolidation and construction of bridges, and these methods should be effective to maintain and inspect the other FRP structures.


Sign in / Sign up

Export Citation Format

Share Document