Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures

2015 ◽  
Vol 53 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Wenjiong Chen ◽  
Shutian Liu

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhanpeng Fang ◽  
Lei Yao ◽  
Shuxia Tian ◽  
Junjian Hou

This paper presents microstructural topology optimization of viscoelastic materials for the plates with constrained layer damping (CLD) treatments. The design objective is to maximize modal loss factor of macrostructures, which is obtained by using the Modal Strain Energy (MSE) method. The microstructure of the viscoelastic damping layer is composed of 3D periodic unit cells. The effective elastic properties of the unit cell are obtained through the strain energy-based method. The density-based topology optimization is adopted to find optimal microstructures of viscoelastic materials. The design sensitivities of modal loss factor with respect to the design variables are analyzed and the design variables are updated by Method of Moving Asymptotes (MMA). Numerical examples are given to demonstrate the validity of the proposed optimization method. The effectiveness of the optimal design method is illustrated by comparing a solid and an optimized cellular viscoelastic material as applied to the plates with CLD treatments.



2013 ◽  
Vol 347-350 ◽  
pp. 1182-1186 ◽  
Author(s):  
Zhan Xin Liu ◽  
Hong Guan ◽  
Wei Guang Zhen

Optimum distribution of viscoelastic materials of damped sandwich plate composite for suppressing plate vibration is investigated. A solid isotropic material with penalization model is described based on the proposed interface finite element of viscoelastic layer. The objective function is chosen as maximization of the modal loss factor. Numerical results show that the optimum distributions of viscoelastic materials are mainly at the place where large shear displacements would be happened.



2014 ◽  
Vol 894 ◽  
pp. 158-162 ◽  
Author(s):  
Bing Qin Wang ◽  
Bing Li Wang ◽  
Zhi Yuan Huang

The evolutionary structural optimization (ESO) is used to optimize constrained damping layer structure. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, the elements of constrained damping layers and modal loss factor are considered as design variable and objective function, while damping material consumption is considered as a constraint. The sensitivity of modal loss factor to design variable is further derived using modal strain energy analysis method. Numerical example is used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout.





Author(s):  
Arnold Lumsdaine

The aim of this research is to determine the optimal shape of a constrained viscoelastic damping layer on an elastic beam by means of topology optimization. The optimization objective is to maximize the system loss factor for the first resonance frequency of the base beam. All previous optimal design studies on viscoelastic lamina have been size or shape optimization studies, assuming a certain topology for the damping treatment. In this study, this assumption is relaxed, allowing an optimal topology to emerge. The loss factor is computed using the Modal Strain Energy method in the optimization process. Loss factor results are validated by using the half-power bandwidth method, which requires obtaining the forced response of the structure. The ABAQUS finite element code is used to model the structure with two-dimensional continuum elements. The optimization code uses a Sequential Quadratic Programming algorithm. Results show that significant improvements in damping performance, on the order of 100% to 300%, are obtained by optimizing the constrained damping layer topology. A novel topology for the constraining layer emerges through the optimization process.



Sign in / Sign up

Export Citation Format

Share Document