Numerical solutions of hypersingular integral equations for stress intensity factors of planar embedded interface cracks and their correlations with bimaterial parameters

2020 ◽  
Vol 202 ◽  
pp. 184-194
Author(s):  
Hao Chai ◽  
Jun Lv ◽  
Yumei Bao
1999 ◽  
Author(s):  
Haiying Huang ◽  
George A. Kadomateas ◽  
Valeria La Saponara

Abstract This paper presents a method for determining the dislocation solution in a bi-material half plane and a bi-material infinite strip, which is subsequently used to obtain the mixed-mode stress intensity factors for a corresponding bi-material interface crack. First, the dislocation solution in a bi-material infinite plane is summarized. An array of surface dislocations is then distributed along the free boundary of the half plane and the infinite strip. The dislocation densities of the aforementioned surface dislocations are determined by satisfying the traction-free boundary conditions. After the dislocation solution in the finite domain is achieved, the mixed-mode stress intensity factors for interface cracks are calculated based on the continuous dislocation technique. Results are compared with analytical solution for homogeneous anisotropic media.


1991 ◽  
Vol 113 (3) ◽  
pp. 280-284 ◽  
Author(s):  
T. Nishimura

A new method is proposed for analyzing the stress intensity factors of multiple cracks in a sheet reinforced with riveted stiffeners. Using the basic solution of a single crack and taking unknown density of surface tractions and fastener forces, Fredholm integral equations and compatibility equations of displacements among the sheet, fasteners, and stiffeners are formulated. After solving the unknown density, the stress intensity factors of multiple cracks in the sheet are determined. Some numerical examples are analyzed.


1984 ◽  
Vol 51 (4) ◽  
pp. 780-786 ◽  
Author(s):  
A.-Y. Kuo

Dynamic stress intensity factors for an interfacial crack between two dissimilar elastic, fully anisotropic media are studied. The mathematical problem is reduced to three coupled singular integral equations. Using Jacobi polynomials, solutions to the singular integral equations are obtained numerically. The orders of stress singularity and stress intensity factors of an interfacial crack in a (θ(1)/θ(2)) composite solid agree well with the finite element solutions.


Sign in / Sign up

Export Citation Format

Share Document