Numerical study of turbulent flow and heat transfer in channels with detached pin fin arrays under stationary and rotating conditions

2021 ◽  
Vol 160 ◽  
pp. 106659
Author(s):  
Ce Liang ◽  
Yu Rao
2022 ◽  
pp. 1-28
Author(s):  
Ce Liang ◽  
Yu Rao ◽  
Jianian Chen ◽  
Peng Zhang

Abstract Experiments and numerical simulations under stationary and rotating conditions have been conducted to investigate turbulent flow and heat transfer characteristics of innovative guiding pin fin arrays in a wedge-shaped channel, which models the internal cooling passages for gas turbine blade trailing edge. The Reynolds number range is 10,000-80,000, and the inlet rotation number range is 0-0.46. With the increase of Reynolds numbers, the enhancement of heat transfer performance with guiding pin fin arrays is significantly higher than that with conventional circular pin fin arrays. At the highest Reynolds number of Re=80,000, the overall Nusselt number of the channel with guiding pin fin arrays is about 33.7% higher than that of the channel with circular pin fin arrays under the stationary condition, and is about 23.0% higher than the latter under the rotating conditions. At the highest inlet rotation number of Ro=0.46, the heat transfer difference between the trailing side and leading side of the channel is significantly lower with the guiding pin fin arrays. Both the experiments and numerical simulations indicate that the heat transfer uniformity and enhancement of the channel endwall is significantly improved by the guiding pin fin arrays under stationary and rotating conditions, which provide more reasonable flow distribution in the wedge-shaped channel, and can further produce obviously improved heat transfer in the tip region for the trailing edge internal cooling channel.


2021 ◽  
Author(s):  
Vladimir Olegovich Kindra ◽  
Andrey Nikolaevich Rogalev ◽  
Sergey Konstantinovich Osipov ◽  
Olga Vladimirovna Zlyvko ◽  
Andrey Nikolaevich Vegera

Author(s):  
Peng Zhang ◽  
Yu Rao ◽  
Yanlin Li

This paper presents a numerical study on turbulent flow and heat transfer in the channels with a novel hybrid cooling structure with miniature V-shaped ribs and dimples on one wall. The heat transfer characteristics, pressure loss and turbulent flow structures in the channels with the rib-dimples with three different rib heights of 0.6 mm, 1.0 mm and 1.5 mm are obtained for the Reynolds numbers ranging from 18,700 to 60,000 by numerical simulations, which are also compared with counterpart of a pure dimpled and pure V ribbed channel. The results show that the overall Nusselt numbers of the V rib-dimple channel with the rib height of 1.5 mm is up to 70% higher than that of the channels with pure dimples. The numerical simulations show that the arrangement of the miniature V rib upstream each dimple induces complex secondary flow near the wall and generates downwashing vortices, which intensifies the flow mixing and turbulent kinetic energy in the dimple, resulting in significant improvement in heat transfer enhancement and uniformness.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


Sign in / Sign up

Export Citation Format

Share Document