Research on the mechanism of magnetic flux concentrator in the gap-to-gap induction heating of wind power gear

2021 ◽  
Vol 168 ◽  
pp. 107055
Author(s):  
Huaiyu Wen ◽  
Xiaobo Zhang ◽  
Hugen Ye ◽  
Yi Han
CrystEngComm ◽  
2018 ◽  
Vol 20 (48) ◽  
pp. 7857-7865 ◽  
Author(s):  
Hamed Heidari ◽  
Mohammad Hossein Tavakoli ◽  
Sayed Omid Sobhani ◽  
Mohtaram Honarmandnia

In this paper, a magnetic flux concentrator (MFC) is reported, and its geometry effect on the induction heating process has been calculated in a Czochralski crystal growth system using the 2D finite element method.


2012 ◽  
Vol 268-270 ◽  
pp. 983-991 ◽  
Author(s):  
Feng Li ◽  
Xue Kun Li ◽  
Tian Xing Zhu ◽  
Qian Zhe Zhao ◽  
Yi Ming Kevin Rong

Induction heating possesses wide application in surface hardening for steels. In recent years, the emergence of metal powder bonded magnetic flux concentrator (MPB-MFC) enables induction heating better capability, efficiency, and controllability, therefore the analytical understanding through modeling and simulation becomes necessary for process design and optimization. In this paper, the mechanism of the energy transformation in induction heating with magnetic flux concentrator is carried out. The MPB-MFC assisted induction heating for AISI 1045 steel is studied by comparing the finite element simulation with experimental results. The finite element model solves the coupled electro-magnetic-thermal computation problem, which also involves the consideration of the non-linear material magnetic properties in the process. To verify the simulation, middle-frequency induction heating experiments are conducted to compare with the simulated results. The comparison proves the efficacy of the FEM model, and discloses the inner-correlation of the thermal-magnetic-electric fields in the process.


2020 ◽  
Vol 13 (11) ◽  
pp. 4238-4248 ◽  
Author(s):  
Hyunseok Song ◽  
Deepak Rajaram Patil ◽  
Woon-Ha Yoon ◽  
Kwang-Ho Kim ◽  
Cheol Choi ◽  
...  

A magneto-mechano-electric (MME) generator comprising a magnetoelectric (ME) composite and magnetic flux concentrator (MFC) can effectively harvest the tiny magnetic noise to power the autonomous internet of things (IoT) sensor networks.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5105
Author(s):  
Chen ◽  
Lin ◽  
Chang ◽  
Cheng ◽  
Chen ◽  
...  

In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets rolled as a collar (as the passive magnetic-flux-concentrator) fixed in a guide sheath of an endobronchoscope. The emitting coil is used to produce AC magnetic-flux, which is consequently received by the receiving electromagnets-array. Due to the electromagnetic-induction, a voltage is induced in the receiving electromagnets-array. When the endobronchoscope’s guide sheath (with the silicon-steel collar) travels between the emitting coil and the receiving electromagnets-arrays, the magnetic flux is concentrated by the silicon-steel collar and thereby the induced voltage is changed. Through analyzing the voltage–pattern change, the location of the silicon–steel collar with the guide sheath is targeted. For testing, a bronchial-tree model for training medical doctors and operators is used to test our system. According to experimental results, the system is successfully verified to be able to target the endobronchoscope in the bronchial-tree model. The targeting errors on the x-, y- and z-axes are 9 mm, 10 mm, and 5 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document