A stratified self-calibration method for circular motion in spite of varying intrinsic parameters

2008 ◽  
Vol 26 (6) ◽  
pp. 731-739 ◽  
Author(s):  
Y. Li ◽  
Y.S. Hung ◽  
Sukhan Lee
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1624 ◽  
Author(s):  
Yao Xiao ◽  
Xiaogang Ruan ◽  
Jie Chai ◽  
Xiaoping Zhang ◽  
Xiaoqing Zhu

Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU) measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity errors. These errors may significantly influence the performance of visual-inertial methods. In this paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation and online IMU calibration based on optimization methods in unknown environments without any external equipment. To achieve this goal, we firstly develop a novel preintegration method that can handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into general factors so that we can easily integrate the factors into the current graph-based visual-inertial frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big bundle. We evaluate the proposed method with a publicly available dataset. Experimental results verify that the proposed approach is able to accurately calibrate all the considered parameters in real time, leading to significant improvement of estimation precision of visual-inertial system (VINS) compared with the estimation results with offline precalibrated IMU measurements.


2013 ◽  
Vol 30 (5) ◽  
pp. 519-530 ◽  
Author(s):  
Nabil El Akkad ◽  
Mostafa Merras ◽  
Abderrahim Saaidi ◽  
Khalid Satori

2019 ◽  
Author(s):  
Martinus E Tjahjadi ◽  
Fransisca D Agustina ◽  
Catur A Rokhmana

The process and definition of camera calibration have change greatly over recent years. Aerial metric cameras calibration, for which laboratory and field calibration procedures were a separate process, was performed before and independent of any actual mapping data collection using precise calibration fixtures with an assumption that the camera parameters determined would remain valid for a significant period. In contrast, non-metric cameras are characterized by unstable intrinsic parameters over the times and they are vulnerable to the engine and other vibrations during flight data acquisitions. Moreover, there is no standard calibration procedures exist for these cameras. But, since non-metric camera self-calibration augments the concept of calibration as a part of the measurement process, it can determine the camera intrinsic parameters at the time of the data acquisition as long as highly-convergent geometry and the use of multiple exposures are employed. Therefore, this paper investigates variations of the lens distortion components with object distance within the photographic field by using the self-calibration method. The use of redundant flight paths and tilted camera is also incorporated to ascertain the stability of the principal distance and the principal points during the flight mission. During the experiments, a series of flight mission is conducted to photograph test field areas from over a relatively flat area to highly mountainous one. It is revealed that the radial, decentering, and affinity distortion parameters are more stable than that of the principal distance and principal points against vibrations.


Sign in / Sign up

Export Citation Format

Share Document