intrinsic parameters
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 59)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Peng Cui ◽  
Yuping Zeng

Abstract Due to the low cost and the scaling capability of Si substrate, InAlN/GaN high-electron-mobility transistors (HEMTs) on silicon substrate have attracted more and more attentions. In this paper, a high-performance 50-nm-gate-length InAlN/GaN HEMT on Si with a high on/off current (Ion/Ioff) ratio of 7.28 × 106, an average subthreshold swing (SS) of 72 mV/dec, a low drain-induced barrier lowing (DIBL) of 88 mV, an off-state three-terminal breakdown voltage (BVds) of 36 V, a current/power gain cutoff frequency (fT/fmax) of 140/215 GHz, and a Johnson’s figure-of-merit (JFOM) of 5.04 THz∙V is simultaneously demonstrated. The device extrinsic and intrinsic parameters are extracted using equivalent circuit model, which is verified by the good agreement between simulated and measured S-parameter values. Then the scaling behavior of InAlN/GaN HEMTs on Si is predicted using the extracted extrinsic and intrinsic parameters of devices with different gate lengths (Lg). It presents that a fT/fmax of 230/327 GHz can be achieved when Lg­ scales down to 20 nm with the technology developed in the study, and an improved fT/fmax of 320/535 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMT with regrown ohmic contact technology and 30% decreased parasitic capacitance. This study confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.


2022 ◽  
pp. 217-234
Author(s):  
Elhoucine Essefi ◽  
Soumaya Hajji

This chapter aimed to investigate the record of climatic and environmental change in the sedimentary filling of sebkha Mhabeul and their effect on hydric and eolian erosion within the wetland and its watershed. Along a 37 cm core, the sedimentary, geochemical, and geophysical signals at the Holocene-Anthropocene transition were followed. Sampling was carried out each 1 cm to obtain 37 samples. All studied parameters and clustering techniques indicate that the first 7 cm represent the Anthropocene strata. According to the age model, this upper part of the core records the last 300 yrs. The sedimentary record of the Anthropocene is marked by an increasing rate of sedimentation, grain size fining, heavy metals (Pb, Cu, Ni, Mn, and Fe) enrichment, which is related to increased erosion. Other intrinsic parameters such as CE, pH, Na, K, and CaCO3 enhance sediment erodibility. The measurement of the magnetic susceptibility along a 37 cm core collected from the sebkha Mhabeul shows an obvious upward increase related to a high content of heavy metals for the first 7 cm.


Soft Matter ◽  
2022 ◽  
Author(s):  
Sol Mi Oh ◽  
Chae Han Lee ◽  
So Youn Kim

Since the degree of particle dispersion can determine the physical properties of polymer nanocomposites (PNCs), a great deal of studies has focused on the intrinsic parameters of PNCs such as...


2021 ◽  
Author(s):  
Peng Cui ◽  
Yuping Zeng

Abstract Due to the low cost and the scaling capability of Si substrate, InAlN/GaN high-electron-mobility transistors (HEMTs) on silicon substrate have attracted more and more attentions. In this paper, a high-performance 50-nm-gate-length InAlN/GaN HEMT on Si with a high on/off current (Ion/Ioff) ratio of 7.28 × 106, an average subthreshold swing (SS) of 72 mV/dec, a low drain-induced barrier lowing (DIBL) of 88 mV, an off-state three-terminal breakdown voltage (BVds) of 36 V, a current/power gain cutoff frequency (fT/fmax) of 140/215 GHz, and a Johnson’s figure-of-merit (JFOM) of 5.04 THz∙V is simultaneously demonstrated. The device extrinsic and intrinsic parameters are extracted using equivalent circuit model, which is verified by the good agreement between simulated and measured S-parameter values. Then the scaling behavior of InAlN/GaN HEMTs on Si is predicted using the extracted extrinsic and intrinsic parameters of devices with different gate lengths (Lg). It presents that a fT/fmax of 230/327 GHz can be achieved when Lg­ scales down to 20 nm with the technology developed in the study, and an improved fT/fmax of 320/535 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMT with regrown ohmic contact technology and 30% decreased parasitic capacitance. This study confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ndongmo Fotsa Nicaire ◽  
Perabi Ngoffe Steve ◽  
Ndjakomo Essiane Salome ◽  
Abessolo Ondoua Grégroire

The global demand for renewable energy is growing, and one of the proposed solutions to this energy crisis is the use of photovoltaic systems. So far, they are a reliable solution, as they are nonpolluting and can be used almost anywhere on the planet. However, the design and development of more efficient photovoltaic cells and modules require an accurate extraction of their intrinsic parameters. Up to date, metaheuristic algorithms have proven to be the best methods to obtain accurate values of these intrinsic parameters. Hence, to extract these parameters reliably and accurately, this paper presents an optimization method based on the principle of bald eagle search (BES) during fish hunting. This search is divided into three steps: in the first stage (space selection), the eagle selects the space with the largest number of prey; in the second stage (space search), the eagle moves into the selected space to search for prey; in the third stage (dive), the eagle swings from the best position identified in the second stage and determines the best point to hunt. Thus, we used the proposed BES algorithm to determine the parameters of the single-diode model (SDM), the double-diode model (DDM), and the PV modules. This algorithm converges very quickly and gives a root mean square error (RMSE) of 9.8602 e − 04   for the single-diode model and 9.8248 e − 4 for the dual-diode model. The results obtained show that the proposed algorithm is more efficient than the other methods available in the literature, in terms of the better accuracy of the results obtained. The good harmony of the I-V and P-V characteristic curve of the calculated parameters with that of the measured data from a PV module/cell data sheet proves that the proposed BES should be used among the methods provided in the literature for the identification of PV solar cell parameters.


Author(s):  
C. A. Paiva ◽  
R. G. Campos ◽  
S. P. Camboim

Abstract. The scarcity of metrics for analysing the quality of Voluntary Geographic Information without direct comparisons with reference data makes it impossible to use this information in many areas of society. Especially in developing countries, where collaborative data can help fill the deficit of official data, studies on intrinsic parameters of quality become an alternative to conventional comparative methods for evaluating spatial data. A recurring parameter in related research is Collective Spatial Intelligence. Seeking to offer researchers on the subject a tool capable of measuring the Collective Spatial Intelligence in predefined areas, we developed a Python application that counts representative values of this intelligence in political-administrative limits. Considering that, in general, the quality of spatial data is inferred on these limits, research that seeks to explain the VGI quality without using official data as a reference can be facilitated.


2021 ◽  
Author(s):  
Romil Joshi ◽  
Prutha Shaherawala ◽  
Krishna Rana ◽  
Krupa Joshi ◽  
Rutu Parekh

Sign in / Sign up

Export Citation Format

Share Document