scholarly journals An elementary representation of the higher-order Jacobi-type differential equation

2017 ◽  
Vol 28 (5) ◽  
pp. 976-991 ◽  
Author(s):  
Clemens Markett
2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


2005 ◽  
Vol 278 (12-13) ◽  
pp. 1538-1549 ◽  
Author(s):  
W. N. Everitt ◽  
H. Kalf ◽  
L. L. Littlejohn ◽  
C. Markett

2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Semaa Hassan Aziz ◽  
Mohammed Rasheed ◽  
Suha Shihab

Modified second kind Chebyshev polynomials for solving higher order differential equations are presented in this paper. This technique, along with some new properties of such polynomials, will reduce the original differential equation problem to the solution of algebraic equations with a straightforward and computational digital computer. Some illustrative examples are included. The modified second kind Chebyshev polynomial is calculated using only a small number of the modified second kind Chebyshev polynomials, which leads to attractive results.


2021 ◽  
Author(s):  
Noureddine Bouteraa ◽  
Habib Djourdem

In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.


Author(s):  
S. Jonathan Chapman ◽  
David B Mortimer

A singularly perturbed linear partial differential equation motivated by the geometrical model for crystal growth is considered. A steepest descent analysis of the Fourier transform solution identifies asymptotic contributions from saddle points, end points and poles, and the Stokes lines across which these may be switched on and off. These results are then derived directly from the equation by optimally truncating the naïve perturbation expansion and smoothing the Stokes discontinuities. The analysis reveals two new types of Stokes switching: a higher-order Stokes line which is a Stokes line in the approximation of the late terms of the asymptotic series, and which switches on or off Stokes lines themselves; and a second-generation Stokes line, in which a subdominant exponential switched on at a primary Stokes line is itself responsible for switching on another smaller exponential. The ‘new’ Stokes lines discussed by Berk et al . (Berk et al . 1982 J. Math. Phys. 23 , 988–1002) are second-generation Stokes lines, while the ‘vanishing’ Stokes lines discussed by Aoki et al . (Aoki et al . 1998 In Microlocal analysis and complex Fourier analysis (ed. K. F. T. Kawai), pp. 165–176) are switched off by a higher-order Stokes line.


Sign in / Sign up

Export Citation Format

Share Document