Establishment of in vitro regeneration system for Acaciella angustissima (Timbe) a shrubby plant endemic of México for the production of phenolic compounds

2016 ◽  
Vol 86 ◽  
pp. 49-57 ◽  
Author(s):  
Jannette Alonso-Herrada ◽  
Félix Rico-Reséndiz ◽  
Juan Campos-Guillén ◽  
Ramón G. Guevara-González ◽  
Irineo Torres-Pacheco ◽  
...  
2018 ◽  
Vol 53 (2) ◽  
pp. 133-138 ◽  
Author(s):  
S Khan ◽  
TA Banu ◽  
S Akter ◽  
B Goswami ◽  
M Islam ◽  
...  

An efficient in vitro regeneration system was developed for Rauvolfia serpentina L. through direct and indirect organogenesis from nodal and leaf explants. Among the different growth regulators, MS medium supplemented with 2.0 mg/l BAP, 0.5mg/l IAA and 0.02mg/l NAA found best for the multiple shoot formation from nodal segments. In this combination 98% explants produced multiple shoots and the average number of shoots per explants is 13∙4. The frequency of callus induction and multiple shoot induction from leaves was highest 88% in MS medium supplemented with 2.0 mg/l BAP, where mean number of shoots/explants was 12.5. The highest frequency of root induction (80%) and mean number of roots/plantlets (10) were obtained on half strength of MS medium containing 0.2 mg/l IBA. The rooted plantlets were transferred for hardening following acclimatization and finally were successfully established in the field.Bangladesh J. Sci. Ind. Res.53(2), 133-138, 2018


2006 ◽  
Vol 86 (1) ◽  
pp. 63-69
Author(s):  
Seedhabadee Ganeshan ◽  
Brian J Weir ◽  
Monica Båga ◽  
Brian G Rossnagel ◽  
Ravindra N Chibbar

A simple two-step model for evaluation of in vitro regeneration protocols is proposed based on callus induction and regeneration from immature scutella of two Canadian barley (Hordeum vulgare L.) genotypes, AC Metcalfe and SB92559 using the Enhanced Regeneration System (ERS). The number of explants producing embryogenic callus, the number of plants per embryogenic callus and the number of plants per explant were considered. Tissue culture parameters included three combinations of growth regulators, two carbon sources in culture media, and three cold treatment regimes of spikes prior to scutella isolation. Culture medium containing 5 µM 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 µM benzyl adenine (BA) induced the highest percent of embryogenic calli and the highest number of shoots per embryogenic callus from AC Metcalfe. Medium containing 3.75 µM 2,4-D and 0.75 µM BA gave the best response for SB92559. Both genotypes produced more shoots on maltose than on sucrose medium. A 2-d treatment of spikes at 4°C resulted in best response for SB92559. Regeneration response from AC Metcalfe scutella from spikes was unaffected by being subjected to 2, 4 or 6 d of cold. Conditions resulting in best responses from both genotypes were tested on four commercial barley varieties. However, these lines showed inferior regeneration compared to SB92559 and AC Metcalfe. Key words: Hordeum vulgare, scutella, embryogenic callus, shoot production


2017 ◽  
Vol 107 ◽  
pp. 219-226 ◽  
Author(s):  
Aurelia Ślusarkiewicz-Jarzina ◽  
Aleksandra Ponitka ◽  
Joanna Cerazy-Waliszewska ◽  
Maria Katarzyna Wojciechowicz ◽  
Karolina Sobańska ◽  
...  

2009 ◽  
Vol 53 (4) ◽  
pp. 750-754 ◽  
Author(s):  
A. U. Turker ◽  
B. Yucesan ◽  
E. Gurel

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 461E-461
Author(s):  
Winthrop B. Phippen ◽  
James E. Simon

A plant regeneration protocol was successfully developed for basil (O. basilicum L.). Explants from 1-month-old seedlings yielded the highest frequency of regeneration of shoots (37%) with an average number of 3.6 shoots per explant. Calli and shoot induction were initiated on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ) (4 mg/L) for ≈30 days. Shoot induction and development was achieved by refreshing the induction medium once after 14 days. The most morphogenetically responsive explants were basal leaf explants from the first fully expanded true leafs of greenhouse-grown basil seedlings. Developing shoots were then rooted on MS media in the dark without TDZ. Within 20 days, rooted plantlets were transferred and acclimatized under greenhouse conditions where they developed normal morphological characteristics. This is the first report of a successful in vitro regeneration system for basil through primary callus. The establishment of a reliable regeneration procedure is critical when developing a transformation protocol for enhancing the production of basil for insect and disease resistance and improved essential oil constituents.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Muhammad Usman ◽  
Muhammad Sarwar Khan ◽  
Muhammad Mumtaz Khan ◽  
Muhammad Jaffar Jaskani ◽  
Abdul Salam Khan

1992 ◽  
Vol 19 (2) ◽  
pp. 82-87 ◽  
Author(s):  
Ming Cheng ◽  
David C. H. Hsi ◽  
Gregory C. Phillips

Abstract This study evaluated plant development via direct organogenesis from in vitro-cultured young seedling tissues of cultivated peanut, especially the valencia-type peanut. Complete plants were regenerated from in vitro-cultured petiolule-with-blade-attached explants, leaflet segments, and epicotyl andpetiole sections. Multiple shoots arose on Murashige and Skoog medium (MS) supplemented with 6-benzylaminopurine (BA) (5–25 mg/L) plus 1-naphthaleneacetic acid (NAA) (0.5–3 mg/L). After 30 d culture on 25 mg/L BA + 1 mg/L NAA, 1.6 buds or shoots/explant were regenerated from the petiolule-with-blade-attached explants. Comparable numbers of shoots were obtained from epicotyl sections of the first node region of the seedling after 60 d culture using 10 mg/L BA + 1 mg/L NAA. Leaflet segments and petiole sections were less responsive for shoot formation. Excised shoots developed roots in vitro upon transfer for 15 d to MS medium supplemented with NAA at 1 mg/L. Plantlets were transferred to soil and grown in a greenhouse to maturity. A wide range of cultivated peanut genotypes was evaluated for organogenic responsiveness, using the petiolule-with-blade-attached explant source. Only valencia-type cultivars, or a hybrid derivative with a Valencia background, were responsive with this regeneration system.


Sign in / Sign up

Export Citation Format

Share Document