Structural evolution during corn stalk acidic and alkaline hydrogen peroxide pretreatment

2022 ◽  
Vol 176 ◽  
pp. 114386
Author(s):  
Ying Xia ◽  
Qiying Liu ◽  
Xiaohong Hu ◽  
Xu Li ◽  
Yongwang Huang ◽  
...  
Cellulose ◽  
2020 ◽  
Vol 27 (8) ◽  
pp. 4255-4269
Author(s):  
Liang He ◽  
Shibo Yang ◽  
Dong Chen ◽  
Lincai Peng ◽  
Yuxin Liu ◽  
...  

2006 ◽  
Vol 21 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Eva Svensson Rundlöf ◽  
Eric Zhang ◽  
Liming Zhang ◽  
Göran Gellerstedt

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Jeanette M. Cardamone ◽  
Alberto Nuñez ◽  
Rafael A. Garcia ◽  
Mila Aldema-Ramos

Keratin from wool is a reactive, biocompatible, and biodegradable material. As the biological structural component of skin (soft keratins) and of nails, claws, hair, horn, feathers, and scales (hard keratins) pure keratin comprises up to 90% by weight of wool. Wool was treated in alkaline solutions to extract from 68% to 82% keratin within 2 to 5 hours of exposure at . The keratin products were water-soluble and were confirmed to contain intermediate filament and microfibrillar component-proteins of fractured, residual cuticle, and cortical cells. Oxidation of wool by peroxycarboximidic acid in alkaline hydrogen peroxide produced keratin products with distinct microcrystalline structures: descaled fibers, fibrous matrices, and lyophilized powders. Morphology and confirmation of peptide functionality were documented by SEM, Amino Acid Analysis, SDS-PAGE gel electrophoresis, MALDI-TOF/TOF, and FTIR analyses. The reactivity of keratin from wool models the reactivity of keratin from low-value sources such as cattle hair.


CORROSION ◽  
2000 ◽  
Vol 56 (8) ◽  
pp. 809-818 ◽  
Author(s):  
J. Been ◽  
D. Tromans

2017 ◽  
Vol 108 ◽  
pp. 110-117 ◽  
Author(s):  
R.A.W. Smith ◽  
B. Garrett ◽  
K.R. Naqvi ◽  
A. Fülöp ◽  
S.P. Godfrey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document