different tissues
Recently Published Documents


TOTAL DOCUMENTS

1995
(FIVE YEARS 503)

H-INDEX

75
(FIVE YEARS 8)

2023 ◽  
Vol 83 ◽  
Author(s):  
X. Du ◽  
X. Mi ◽  
X. Liu ◽  
J. B. Mawolo

Abstract The telencephalon refers to the most highly developed and anterior part of the forebrain, consisting mainly of the cerebral hemispheres. The study determined Neuroglobin (Ngb) and Hypoxia-inducible factor (HIF-1α) expression in the telencephalon of yak and cattle, and compare the expression and distribution pattern of Ngb and HIF-1α in the two animals. Immunohistochemistry (IHC), quantitative real-time Polymerase Chain Reaction (qRT-PCR), and Western blot (WB) were employed to investigate Ngb and Hif-1α expression in the telencephalon of yak and cattle. mRNA and protein expressions of Ngb and HIF-1α showed positive in different tissues of the yak and cattle telencephalon. Ngb expression in tissues of the yak recorded higher as compare to cattle while HIF-1α expression was found higher in cattle than yak. The HIF-1α expression in some tissues of yak telencephalon was consistent with the cattle. The results documented that HIF-1α may have a direct or indirect synergistic effect on Ngb expression in the yak telencephalon to improve hypoxia adaptation. It is suggested that yak may need more Ngb expression for adaptation, but the expression of HIF-1α seems to be down-regulated during long-term adaptation, and the specific causes of this phenomenon needs to be further verified.


2022 ◽  
Vol 23 (2) ◽  
pp. 962
Author(s):  
Xingzhi Wang ◽  
Nitesh Tewari ◽  
Fuyuki Sato ◽  
Keiji Tanimoto ◽  
Lakshmi Thangavelu ◽  
...  

Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yanjie Li ◽  
Honggang Sun ◽  
Federico Tomasetto ◽  
Jingmin Jiang ◽  
Qifu Luan

The internal cycling of nitrogen (N) storage and consumption in trees is an important physiological mechanism associated with tree growth. Here, we examined the capability of near-infrared spectroscopy (NIR) to quantify the N concentration across tissue types (needle, trunk, branch, and root) without time and cost-consuming. The NIR spectral data of different tissues from slash pine trees were collected, and the N concentration in each tissue was determined using standard analytical method in laboratory. Partial least squares regression (PLSR) models were performed on a set of training data randomly selected. The full-length spectra and the significant multivariate correlation (sMC) variable selected spectra were used for model calibration. Branch, needle, and trunk PLSR models performed well for the N concentration using both full length and sMC selected NIR spectra. The generic model preformatted a reliable accuracy with R2C and R2CV of 0.62 and 0.66 using the full-length spectra, and 0.61 and 0.65 using sMC-selected spectra, respectively. Individual tissue models did not perform well when being used in other tissues. Five significantly important regions, i.e., 1480, 1650, 1744, 2170, and 2390 nm, were found highly related to the N content in plant tissues. This study evaluates a rapid and efficient method for the estimation of N content in different tissues that can help to serve as a tool for tree N storage and recompilation study.


Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737370
Author(s):  
Jianmeng Cao ◽  
Zhigang Liu ◽  
Defeng Zhang ◽  
Fuqiang Guo ◽  
Fengying Gao ◽  
...  

2022 ◽  
Vol 12 (3) ◽  
pp. 0
Author(s):  
Bo-Yan Liu ◽  
Jun-Li Xue ◽  
Qian-Qian Gu ◽  
Min Zhao ◽  
Meng-Yu Zhang ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 421
Author(s):  
Consuelo Arias ◽  
Luis A. Salazar

Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage. This review aims to analyze epigenetic mechanisms that are currently associated with autophagy in OA, and to evaluate whether polyphenols are used to reverse the epigenetic alterations generated by aging in the autophagy pathway.


2021 ◽  
Vol 23 (1) ◽  
pp. 370
Author(s):  
Laura García-Hernández ◽  
María Belén García-Ortega ◽  
Gloria Ruiz-Alcalá ◽  
Esmeralda Carrillo ◽  
Juan Antonio Marchal ◽  
...  

The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, β, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.


2021 ◽  
Vol 37 ◽  
pp. e37079
Author(s):  
Milena Christy Santos ◽  
Édila Vilela de Resende Von Pinho ◽  
Heloisa Oliveira dos Santos ◽  
Danielle Rezende Vilela ◽  
Izabel Costa Silva Neta ◽  
...  

Drought stress is a major limiting factor for the development of maize, and the identification of the expression of genes related to this stress in seeds and seedlings can be an important tool to accelerate the selection process. The expression of genes related to tolerance to water deficit in seeds and in different tissues of maize seedlings were evaluated. Four tolerant genotypes (91-T, 32-T, 91x75-T, 32x75-T) and four non-tolerant genotypes (37-NT, 57-NT, 37x57-NT and 31x37-NT) were seeded in a substrate with 10% (stress) and 70% (control) water retention capacity. The expression of 4 enzymes were evaluated: catalase (CAT), peroxidase (PO), esterase (EST), and heat-resistant protein (HRP), as well as the relative expression of 6 genes: ZmLEA3, ZmPP2C, ZmCPK11, ZmDREB2A/2.1s, ZmDBP3 and ZmAN13 were evaluated in seed, shoots and roots of seedlings submitted or not to stress. There was variation in the expression of CAT, PO, SOD, EST and HRP enzymes among the evaluated genotypes and also in the different tissues evaluated. Higher expression of the CAT and PO was observed in the shoots. There was a greater expression of the EST in the genotypes non-tolerant to water deficit. HRP was expressed only in seeds. In the aerial part of maize seedlings, classified as tolerant, higher expression of genes ZmLEA3 and ZmCPK11 was observed. There was a higher expression of the ZmAN13 and ZmDREB2A/2.1S genes in roots developed under stress conditions and a higher expression of the ZmPP2C gene in seeds of line 91-T, which is classified as tolerant to drought stress.


2021 ◽  
Vol 23 (1) ◽  
pp. 196
Author(s):  
Yutong Han ◽  
Ya Yang ◽  
Yan Li ◽  
Xin Yin ◽  
Zhiyu Chen ◽  
...  

The triterpenes in bitter gourd (Momordica charantia) show a variety of medicinal activities. Oxidosqualene cyclase (OSC) plays an indispensable role in the formation of triterpene skeletons during triterpene biosynthesis. In this study, we identified nine genes encoding OSCs from bitter gourd (McOSC1–9). Analyses of their expression patterns in different tissues suggested that characteristic triterpenoids may be biosynthesized in different tissues and then transported. We constructed a hairy root system in which McOSC7 overexpression led to an increased accumulation of camaldulenic acid, enoxolone, and quinovic acid. Thus, the overexpression of McOSC7 increased the active components content in bitter gourd. Our data provide an important foundation for understanding the roles of McOSCs in triterpenoid synthesis.


Sign in / Sign up

Export Citation Format

Share Document