Bilateral two-dimensional least mean square filter for infrared small target detection

2014 ◽  
Vol 65 ◽  
pp. 17-23 ◽  
Author(s):  
Yao Zhao ◽  
Haibin Pan ◽  
Changping Du ◽  
Yanrong Peng ◽  
Yao Zheng
Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 567 ◽  
Author(s):  
Wen-Huan Cao ◽  
Shu-Cai Huang

By applying compressive sensing to infrared imaging systems, the sampling and transmitting time can be remarkably reduced. Therefore, in order to meet the real-time requirements of infrared small target detection tasks in the remote sensing field, many approaches based on compressive sensing have been proposed. However, these approaches need to reconstruct the image from the compressive domain before detecting targets, which is inefficient due to the complex recovery algorithms. To overcome this drawback, in this paper, we propose a two-dimensional adaptive threshold algorithm based on compressive sensing for infrared small target detection. Instead of processing the reconstructed image, our algorithm focuses on directly detecting the target in the compressive domain, which reduces both the time and memory requirements for image recovery. First, we directly subtract the spatial background image in the compressive domain of the original image sampled by the two-dimensional measurement model. Then, we use the properties of the Gram matrix to decode the subtracted image for further processing. Finally, we detect the targets by employing the advanced adaptive threshold method to the decoded image. Experiments show that our algorithm can achieve an average 100% detection rate, with a false alarm rate lower than 0.4%, and the computational time is within 0.3 s, on average.


Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document