neighborhood information
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 49)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Jian Sun ◽  
Yu Zhou ◽  
Chengqing Zong

The relation learning between two entities is an essential task in knowledge graph (KG) completion that has received much attention recently. Previous work almost exclusively focused on relations widely seen in the original KGs, which means that enough training data are available for modeling. However, long-tail relations that only show in a few triples are actually much more common in practical KGs. Without sufficiently large training data, the performance of existing models on predicting long-tail relations drops impressively. This work aims to predict the relation under a challenging setting where only one instance is available for training. We propose a path-based one-shot relation prediction framework, which can extract neighborhood information of an entity based on the relation query attention mechanism to learn transferable knowledge among the same relation. Simultaneously, to reduce the impact of long-tail entities on relation prediction, we selectively fuse path information between entity pairs as auxiliary information of relation features. Experiments in three one-shot relation learning datasets show that our proposed framework substantially outperforms existing models on one-shot link prediction and relation prediction.


2022 ◽  
Vol 40 (4) ◽  
pp. 1-46
Author(s):  
Hao Peng ◽  
Ruitong Zhang ◽  
Yingtong Dou ◽  
Renyu Yang ◽  
Jingyi Zhang ◽  
...  

Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data, typically through message passing among nodes by aggregating their neighborhood information via different operations. While promising, most existing GNNs oversimplify the complexity and diversity of the edges in the graph and thus are inefficient to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this article, we propose RioGNN , a novel Reinforced, recursive, and flexible neighborhood selection guided multi-relational Graph Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of nodes, edges, attributes, and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly, to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework with estimable depth and width for different scales of multi-relational graphs. RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation via the filtering threshold mechanism. Comprehensive experiments on real-world graph data and practical tasks demonstrate the advancements of effectiveness, efficiency, and the model explainability, as opposed to other comparative GNN models.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7999
Author(s):  
Patrick Charpentier ◽  
Frédéric Chaxel ◽  
Nicolas Krommenacker ◽  
Vincent Bombardier ◽  
Fabian Seguel

The idea defended in this paper consists in finding, at any time and everywhere, the arrangement of containers within a composite container. The digital image of the real arrangement obtained defines its digital twin. This image evolves at the same time as its real twin. It can be used throughout the logistics chain during loading/unloading phases in hubs, to check the completeness of a load, to find the particular position of a container, etc. This digital twin is obtained through the collection of neighborhood information from the sensor nodes embedded on each container. This embedded solution allows accessibility to this information everywhere. This proximity information and the instrumentation of the containers define new types of constraints and a new version of a packing problem. We propose here a model integrating them. This model is implemented and tested on different test cases, and numerical results are provided. These show that, under certain conditions that will be presented, it is possible to obtain the digital twin of the real arrangement.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ji Feng ◽  
Bokai Zhang ◽  
Ruisheng Ran ◽  
Wanli Zhang ◽  
Degang Yang

Traditional clustering methods often cannot avoid the problem of selecting neighborhood parameters and the number of clusters, and the optimal selection of these parameters varies among different shapes of data, which requires prior knowledge. To address the above parameter selection problem, we propose an effective clustering algorithm based on adaptive neighborhood, which can obtain satisfactory clustering results without setting the neighborhood parameters and the number of clusters. The core idea of the algorithm is to first iterate adaptively to a logarithmic stable state and obtain neighborhood information according to the distribution characteristics of the dataset, and then mark and peel the boundary points according to this neighborhood information, and finally cluster the data clusters with the core points as the centers. We have conducted extensive comparative experiments on datasets of different sizes and different distributions and achieved satisfactory experimental results.


2021 ◽  
Author(s):  
Lujia Lei ◽  
Chengmao Wu ◽  
Xiaoping Tian

Abstract Clustering algorithms with deep neural network have attracted wide attention of scholars. A deep fuzzy K-means clustering algorithm model with adaptive loss function and entropy regularization (DFKM) is proposed by combining automatic encoder and clustering algorithm. Although it introduces adaptive loss function and entropy regularization to improve the robustness of the model, its segmentation effect is not ideal for high noise; At the same time, its model does not use a convolutional auto-encoder, which is not suitable for high-dimensional images.Therefore, on the basis of DFKM, this paper focus on image segmentation, combine neighborhood median and mean information of current pixel, introduce neighborhood information of membership degree, and extend Euclidean distance to kernel space by using kernel function, propose a dual-neighborhood information constrained deep fuzzy clustering based on kernel function (KDFKMS). A large number of experimental results show that compared with DFKM and classical image segmentation algorithms, this algorithm has stronger anti-noise robustness.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lin Yuan ◽  
Jing Zhao ◽  
Tao Sun ◽  
Zhen Shen

Abstract Background LncRNAs (Long non-coding RNAs) are a type of non-coding RNA molecule with transcript length longer than 200 nucleotides. LncRNA has been novel candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to discover the true association mechanism between lncRNAs and complex diseases. The unprecedented enrichment of multi-omics data and the rapid development of machine learning technology provide us with the opportunity to design a machine learning framework to study the relationship between lncRNAs and complex diseases. Results In this article, we proposed a new machine learning approach, namely LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Association prediction), for disease-related lncRNAs association prediction based multi-omics data, machine learning methods and neural network neighborhood information aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively, and it calculates the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction matrix. We obtain gene similarity matrix by calculating the lncRNA-gene association matrix and the gene-disease association matrix, and we obtain disease similarity matrix by calculating the disease ontology, the disease-miRNA association matrix, and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neighborhood information in similarity matrices by using nonlinear feature learning of neural network. Thirdly, LGDLDA uses embedded node representations to approximate the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential disease-related lncRNAs. Conclusions Compared with lncRNA-disease prediction methods, our proposed method takes into account more critical information and obtains the performance improvement cancer-related lncRNA predictions. Randomly split data experiment results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. The results on different simulation data sets show that LGDLDA can accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied the method to three real cancer data including gastric cancer, colorectal cancer and breast cancer to predict potential cancer-related lncRNAs.


2021 ◽  
Author(s):  
Lin Yuan ◽  
Jing Zhao ◽  
Tao Sun ◽  
Zhen Shen

Abstract Background: LncRNAs (Long non-coding RNAs) are a type of non-coding RNA molecule with transcript length longer than 200 nucleotides. LncRNA has been novel candidate biomarkers in cancer diagnosis and prognosis. However, it is difficult to discover the true association mechanism between lncRNAs and complex diseases. The unprecedented enrichment of multi-omics data and the rapid development of machine learning technology provide us with the opportunity to design a machine learning framework to study the relationship between lncRNAs and complex diseases. Results: In this article, we proposed a new machine learning approach, namely LGDLDA (LncRNA-Gene-Disease association networks based LncRNA-Disease Association prediction), for disease-related lncRNAs association prediction based multi-omics data, machine learning methods and neural network neighborhood information aggregation. Firstly, LGDLDA calculates the similarity matrix of lncRNA, gene and disease respectively. LGDLDA calculates the similarity between lncRNAs through the lncRNA expression profile matrix, lncRNA-miRNA interaction matrix and lncRNA-protein interaction matrix. LGDLDA obtains gene similarity matrix by calculating the lncRNA-gene association matrix and the gene-disease association matrix. LGDLDA obtains disease similarity matrix by calculating the disease ontology, the disease-miRNA association matrix, and Gaussian interaction profile kernel similarity. Secondly, LGDLDA integrates the neighborhood information in similarity matrices by using nonlinear feature learning of neural network. Thirdly, LGDLDA uses embedded node representations to approximate the observed matrices. Finally, LGDLDA ranks candidate lncRNA-disease pairs and then selects potential disease-related lncRNAs. Conclusions: Compared with lncRNA-disease prediction methods, IHI-BMLLR takes into account more critical information and obtains the performance improvement cancer-related lncRNA predictions. Randomly split data experiment results show that the stability of LGDLDA is better than IDHI-MIRW, NCPLDA, LncDisAP and NCPHLDA. The results on different simulation data sets show that LGDLDA can accurately and effectively predict the disease-related lncRNAs. Furthermore, we applied LGDLDA to three real cancer data including gastric cancer, colorectal cancer and breast cancer to predict potential cancer-related lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document