CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye

2016 ◽  
Vol 72 ◽  
pp. 33-41 ◽  
Author(s):  
Azam Khan ◽  
Zia-ur-Rehman ◽  
Muneeb-ur- Rehman ◽  
Rajwali Khan ◽  
Zulfiqar ◽  
...  
Keyword(s):  
2021 ◽  
Vol 33 (6) ◽  
pp. 1294-1298
Author(s):  
R. Raja ◽  
A. Rose Venis ◽  
R. Tamil Selvan ◽  
T. Mohandas

The Congo red dye was decolourized by advanced oxidation process using solar/H2O2 method and the effect of various parameters on decolourization like pH, H2O2 concentration, dye concentration, solar light intensity, additives, COD and TOC removal studies and kinetic studies were investigated. The photodegradation process was done by exposing dye solutions with the concentration of 100 mg/L treated with 50% H2O2 to sunlight with the lux intensity range of 60,000-90,000 lux. The best possible pH 2 with an optimal H2O2 concentration of 1000 mM to achieve 100% decolourization within the period of 5 h. The kinetic studies done on H2O2 concentration also proved that the high solar light intensity leads to higher decolourization and low solar light intensity leads to lesser decolourization. Addition of additives like H2PO4 – and Cl– leads to a decrease in the rate of decolourization. The removal of COD and TOC removal was found to be 83.26% and 5.18%, respectively.


RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 4227-4236 ◽  
Author(s):  
Kalyanaraman Kalpana ◽  
Vaithilingam Selvaraj

Schematic illustration for the photodecomposition of Congo red dye using ZnS/CdS/Ag2S nanocomposites under solar light.


2018 ◽  
Vol 18 (11) ◽  
pp. 7405-7413 ◽  
Author(s):  
Jamal Abdul Nasir ◽  
Shaheen Gul ◽  
Azam Khan ◽  
Zawar Hussain Shah ◽  
Abrar Ahmad ◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 157-164 ◽  
Author(s):  
Shengdan Wang ◽  
Wenhua Gao ◽  
Kefu Chen ◽  
Jinsong Zeng ◽  
Jun Xu ◽  
...  

Cellulose nanofibrils (CNF) were prepared by cellulase in conjunction with mechanical disintegration from the bleached softwood kraft pulp and labelled by Congo red dye. The labelled CNF were used to investigate the retention and distribution of CNF in paper handsheets. The retention of the labelled CNF was obtained by measuring the absorbance of white water using an ultraviolet-visible spectrophotometer. The results showed that this method for measuring the retention was rapid, feasible, and sensitive, owing to the high correlation coefficient R2 (0.9993) of the standard curve. The labelled CNF showed even distribution in paper handsheets. The colorimetric values of paper handsheets were explored with a residual ink analyzer.


2020 ◽  
Vol 18 (1) ◽  
pp. 287-294
Author(s):  
Harsasi Setyawati ◽  
Handoko Darmokoesoemo ◽  
Irmina Kris Murwani ◽  
Ahmadi Jaya Permana ◽  
Faidur Rochman

AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.


2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2021 ◽  
pp. 101183
Author(s):  
Munazza Maqbool ◽  
Sana Sadaf ◽  
Haq N. Bhatti ◽  
Sehrish Rehmat ◽  
Abida Kausar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document