Enhancing the security of password authenticated key agreement protocols based on chaotic maps

2015 ◽  
Vol 290 ◽  
pp. 63-71 ◽  
Author(s):  
Tian-Fu Lee
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zuowen Tan

Two-factor authentication is one of the widely used approaches to allow a user to keep a weak password and establish a key shared with a server. Recently, a large number of chaotic maps-based authentication mechanisms have been proposed. However, since the Diffie–Hellman problem of the Chebyshev polynomials defined on the interval [−1,+1] can be solved by Bergamo et al.’s method, most of the secure chaotic maps-based key agreement protocols utilize the enhanced Chebyshev polynomials defined on the interval (−∞,+∞). Thus far, few authenticated key agreement protocols based on chaotic maps have been able to achieve user unlinkability. In this paper, we take the first step in addressing this problem. More specifically, we propose the notions of privacy in authenticated key agreement protocols: anonymity-alone, weak unlinkability, medium unlinkability, and strong unlinkability. Then, we construct two two-factor authentication schemes with medium unlinkability based on Chebyshev polynomials defined on the interval [−1,1] and (−∞,+∞), respectively. We do the formal security analysis of the proposed schemes under the random oracle model. In addition, the proposed protocols satisfy all known security requirements in practical applications. By using Burrows-Abadi-Needham logic (BAN-logic) nonce verification, we demonstrate that the proposed schemes achieve secure authentication. In addition, the detailed comparative security and performance analysis shows that the proposed schemes enable the same functionality but improve the security level.


Sign in / Sign up

Export Citation Format

Share Document