Locally exchanged twisted cubes: Connectivity and super connectivity

2016 ◽  
Vol 116 (7) ◽  
pp. 460-466 ◽  
Author(s):  
Jou-Ming Chang ◽  
Xiang-Rui Chen ◽  
Jinn-Shyong Yang ◽  
Ro-Yu Wu
Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 267 ◽  
Author(s):  
Yilun Shang

The super connectivity κ ′ ( G ) of a graph G is the minimum cardinality of vertices, if any, whose deletion results in a disconnected graph that contains no isolated vertex. G is said to be r-super connected if κ ′ ( G ) ≥ r . In this note, we establish some asymptotic almost sure results on r-super connectedness for classical Erdős–Rényi random graphs as the number of nodes tends to infinity. The known results for r-connectedness are extended to r-super connectedness by pairing off vertices and estimating the probability of disconnecting the graph that one gets by identifying the two vertices of each pair.


2020 ◽  
Vol 30 (03) ◽  
pp. 2040007
Author(s):  
Cheng-Kuan Lin ◽  
Eddie Cheng ◽  
László Lipták

The connectivity of a graph [Formula: see text], [Formula: see text], is the minimum number of vertices whose removal disconnects [Formula: see text], and the value of [Formula: see text] can be determined using Menger’s theorem. It has long been one of the most important factors that characterize both graph reliability and fault tolerability. Two extensions to the classic notion of connectivity were introduced recently: structure connectivity and substructure connectivity. Let [Formula: see text] be isomorphic to any connected subgraph of [Formula: see text]. The [Formula: see text]-structure connectivity of [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum set [Formula: see text] of connected subgraphs in [Formula: see text] such that every element of [Formula: see text] is isomorphic to [Formula: see text], and the removal of [Formula: see text] disconnects [Formula: see text]. The [Formula: see text]-substructure connectivity of [Formula: see text], denoted by [Formula: see text], is the cardinality of a minimum set [Formula: see text] of connected subgraphs in [Formula: see text] whose removal disconnects [Formula: see text] and every element of [Formula: see text] is isomorphic to a connected subgraph of [Formula: see text]. The family of hypercube-like networks includes many well-defined network architectures, such as hypercubes, crossed cubes, twisted cubes, and so on. In this paper, both the structure and substructure connectivity of hypercube-like networks are studied with respect to the [Formula: see text]-star [Formula: see text] structure, [Formula: see text], and the [Formula: see text]-cycle [Formula: see text] structure. Moreover, we consider the relationships between these parameters and other concepts.


2019 ◽  
Vol 7 (3) ◽  
pp. 501-509
Author(s):  
Hui Shang ◽  
Eminjan Sabir ◽  
Ji-Xiang Meng

2000 ◽  
Vol 01 (02) ◽  
pp. 115-134 ◽  
Author(s):  
TSENG-KUEI LI ◽  
JIMMY J. M. TAN ◽  
LIH-HSING HSU ◽  
TING-YI SUNG

Given a shortest path routing algorithm of an interconnection network, the edge congestion is one of the important factors to evaluate the performance of this algorithm. In this paper, we consider the twisted cube, a variation of the hypercube with some better properties, and review the existing shortest path routing algorithm8. We find that its edge congestion under the routing algorithm is high. Then, we propose a new shortest path routing algorithm and show that our algorithm has optimum time complexity O(n) and optimum edge congestion 2n. Moreover, we calculate the bisection width of the twisted cube of dimension n.


Sign in / Sign up

Export Citation Format

Share Document