Visual field defects in pediatric intracranial hypertension

Author(s):  
David L. Rogers ◽  
Hilliary E. Inger ◽  
Catherine O. Jordan ◽  
Rachel E. Reem ◽  
Shawn C. Aylward ◽  
...  
Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1346-1354
Author(s):  
Dagmar Beier ◽  
Johanne Juhl Korsbæk ◽  
Jonna Skov Madsen ◽  
Dorte Aalund Olsen ◽  
Laleh Dehghani Molander ◽  
...  

Background Damage of the optic nerve is the major complication of idiopathic intracranial hypertension. A biomarker indicative for optic nerve damage would help identifying high-risk patients requiring surgical procedures. Here, we studied the potential of cerebrospinal fluid neurofilament to predict idiopathic intracranial hypertension-induced optic nerve damage. Methods In two centers, serum and cerebrospinal fluid of 61 patients with clinically suspected idiopathic intracranial hypertension were prospectively collected. Neurofilament concentrations were measured and related to ophthalmological assessment. Results The average cerebrospinal fluid neurofilament concentration in patients with moderate and severe papilledema was increased compared to patients with minor and no papilledema (1755 ± 3507 pg/ml vs. 244 ± 102 pg/ml; p < 0.001). Cerebrospinal fluid neurofilament concentrations correlated with the maximal lumbar puncture opening pressure (r = 0.67, p < 0.001). In patients fulfilling the Friedman criteria for idiopathic intracranial hypertension with or without papilledema (n = 35), development of bilateral visual field defects and bilateral atrophy of the optic nerve were associated with increased average age-adjusted cerebrospinal fluid neurofilament concentrations. At last follow-up (n = 30), 8/13 of patients with increased, but only 3/17 with normal, cerebrospinal fluid neurofilament had developed bilateral visual field defects and/or bilateral optic nerve atrophy resulting in a sensitivity of 72.7% and a specificity of 73.7% of cerebrospinal fluid neurofilament to detect permanent optic nerve damage. Conclusions Cerebrospinal fluid neurofilament is a putative biomarker for optical nerve damage in idiopathic intracranial hypertension.


2021 ◽  
Vol 223 ◽  
pp. 229-240
Author(s):  
Eren Ekici ◽  
Sasan Moghimi ◽  
Huiyuan Hou ◽  
James Proudfoot ◽  
Linda M. Zangwill ◽  
...  

1998 ◽  
Vol 4 (2) ◽  
pp. 79-84 ◽  
Author(s):  
N Accornero ◽  
S Rinalduzzi ◽  
M Capozza ◽  
E Millefiorini ◽  
G C Filligoi ◽  
...  

Color visual field analysis has proven highly sensitive for early visual impairments diagnosis in MS, yet it has never attained widespread popularity usually because the procedure is difficult to standardize, the devices are costly, and the test is fatiguing. We propose a computerized procedure running on standard PC, cost effective, clonable, and easy handled. Two hundred and sixty-four colored patches subtending 18 angle of vision, with selected hues and low saturation levels are sequentially and randomly displayed on gray equiluminous background of the PC screen subtending 2486408 angle of vision. The subject is requested to press a switch at the perception of the stimulus. The output provides colored maps with quantitative information. Comparison between normals and a selected population of MS patients with no actual luminance visual field defects, showed high statistical difference.


Sign in / Sign up

Export Citation Format

Share Document