The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst

2007 ◽  
Vol 38 (1) ◽  
pp. 69-82 ◽  
Author(s):  
J.S. Olfert ◽  
J.P.R. Symonds ◽  
N. Collings
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4561 ◽  
Author(s):  
José R. Serrano ◽  
Francisco J. Arnau ◽  
Jaime Martín ◽  
Ángel Auñón

Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an increment in the after-treatment upstream temperature by increasing the residual gas amount. In this study, a one-dimensional gas dynamics engine model has been used to simulate several VVT strategies and develop a control system to actuate over the valves timing in order to increase diesel oxidation catalyst efficiency and reduce the exhaust pollutant emissions. A transient operating conditions comparison, taking the Worldwide Harmonized Light-Duty Vehicles Test Cycle (WLTC) as a reference, has been done by analyzing fuel economy, HC and CO pollutant emissions levels. The results conclude that the combination of an early exhaust and a late intake valve events leads to a 20% reduction in CO emissions with a fuel penalty of 6% over the low speed stage of the WLTC, during the warm-up of the oxidation catalyst. The same set-up is able to reduce HC emissions down to 16% and NOx emission by 13%.


2015 ◽  
Vol 8 (3) ◽  
pp. 1283-1299 ◽  
Author(s):  
Jonathan E. Etheridge ◽  
Timothy C. Watling ◽  
Andrew J. Izzard ◽  
Michael A. J. Paterson

2010 ◽  
Vol 24 (2) ◽  
pp. 985-991 ◽  
Author(s):  
Hong Zhao ◽  
Yunshan Ge ◽  
Xiaochen Wang ◽  
Jianwei Tan ◽  
Aijuan Wang ◽  
...  

Author(s):  
Steven G. Fritz ◽  
John C. Hedrick ◽  
Tom Weidemann

This paper describes the development of a low emissions upgrade kit for EMD GP20D and GP15D locomotives. These locomotives were originally manufactured in 2001, and met EPA Tier 1 locomotive emission regulations. The 1,491 kW (2,000 HP) EMD GP20D locomotives are powered by Caterpillar 3516B engines, and the 1,119 kW (1,500 HP) EMD GP15D locomotives are powered by Caterpillar 3512B engines. CIT Rail owns a fleet of 50 of these locomotives that are approaching their mid-life before first overhaul. Baseline exhaust emissions testing was followed by a low emissions retrofit development focusing on fuel injection timing, crankcase ventilation filtration, and application of a diesel oxidation catalyst (DOC), and then later a diesel particulate filter (DPF). The result was a EPA Tier 0+ certification of the low emissions upgrade kit, with emission levels below EPA Line-Haul Tier 3 NOx, and Tier 4 HC, CO, and PM levels.


Sign in / Sign up

Export Citation Format

Share Document