pollutant emission
Recently Published Documents


TOTAL DOCUMENTS

844
(FIVE YEARS 352)

H-INDEX

30
(FIVE YEARS 8)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Author(s):  
Zongyan Lv ◽  
Lei Yang ◽  
Lin Wu ◽  
Jianfei Peng ◽  
Qijun Zhang ◽  
...  

Vehicle exhaust emissions have seriously affected air quality and human health, and understanding the emission characteristics of vehicle pollutants can promote emission reductions. In this study, a chassis dynamometer was used to study the emission characteristics of the pollutants of two gasoline vehicles (Euro 5 and Euro 6) when using six kinds of fuels. The results show that the two tested vehicles had different engine performance under the same test conditions, which led to a significant difference in their emission characteristics. The fuel consumption and pollutant emission factors of the WLTC cycle were higher than those of the NEDC. The research octane number (RON) and ethanol content of fuels have significant effects on pollutant emissions. For the Euro 5 vehicle, CO and particle number (PN) emissions decreased under the WLTC cycle, and NOx emissions decreased with increasing RONs. For the Euro 6 vehicle, CO and NOx emissions decreased and PN emissions increased with increasing RONs. Compared with traditional gasoline, ethanol gasoline (E10) led to decreases in NOx and PN emissions, and increased CO emissions for the Euro 5 vehicle, while it led to higher PN and NOx emissions and lower CO emissions for the Euro 6 vehicle. In addition, the particulate matter emitted was mainly nucleation-mode particulate matter, accounting for more than 70%. There were two peaks in the particle size distribution, which were about 18 nm and 40 nm, respectively. Finally, compared with ethanol–gasoline, gasoline vehicles with high emission standards (Euro 6) are more suitable for the use of traditional gasoline with a high RON.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 121
Author(s):  
Ji-Hyeon Kim ◽  
Jin-Ho Kim ◽  
Hyo-Sik Kim ◽  
Hyun-Ji Kim ◽  
Suk-Hwan Kang ◽  
...  

As climates change around the world, concern regarding environmental pollutants emitted into the atmosphere is increasing. The cement industry consistently produces more than 4000 million metric tons of cement per year. However, the problem of air pollutants being emitted from the calcination process is becoming more critical because their amount increases proportionally with cement production. Each country has established regulatory standards for pollutant emission. Accordingly, the cement industry is equipped with facilities to reduce air pollutants, one of which is the NOx removal process. NOx reduction processes under combustion conditions are modified to minimize NOx generation, and the generated NOx is removed through post-treatment. In terms of NOx removal efficiency, the post-treatment process effectively changes the combustion conditions during calcination. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) processes are post-treatment environmental facilities for NOx reduction. Accordingly, considering the stringent NOx emission standards in the cement industry, SNCR is essential, and SCR is selectively applied. Therefore, this paper introduces nitrogen oxide among air pollutants emitted from the South Korean cement industry and summarizes the technologies adapted to mitigate the emission of NOx by cement companies in South Korea.


2022 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
José Enrique Gutiérrez-Romero ◽  
Jerónimo Esteve-Pérez

The reduction of ship pollutants is a key issue in the international agenda. Emissions estimation is usually based on standard calculations that consider the different scenarios of ships. This work presents research on the influence of added resistance on ship emissions and freight throughput. First, a methodology to assess the added resistance influence is shown. The procedure is applied to a roll on-roll off ship under two load conditions. Analyses are computed to value wind- and wave-added resistances for different seasons. An investigation on ship pollutant emissions for a whole route is performed. Moreover, the influence of added resistance on the ship freight throughput is analyzed. Finally, some relevant information is concluded. For instance, a difference of up to 53% in pollutant emission estimation is observed if added resistance is considered. Additionally, the navigation in added resistance conditions could lead to a freight loss of 18% per operational year.


Author(s):  
Feifei Gao ◽  
Baogui Xin

Abstract We present and estimate a dynamic stochastic general equilibrium model for an eco-environmental damage compensation system (EDCS) with multi-stakeholder engagements. Then we explore the dynamic effect under different shocks such as household and government supervision, environmental damage compensation ratio, pollution emission threshold, and pollution control efforts. The household and government supervision show the positive effect of environmental regulation on conserving energy, abating emission, reducing damage compensation, and increasing economic output. The environmental damage compensation ratio can also contribute to energy conservation and emission reduction, but there are no significant regulation effects of pollutant emission and damage compensation. The pollutant emission threshold and the pollution control efforts have significant environmental regulation effects, but the latter does not significantly restrain high energy consumption. All the shocks mentioned above can effectively improve the green development level.


Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121801
Author(s):  
Yachao Wang ◽  
Xi Feng ◽  
Haiguang Zhao ◽  
Chunxiao Hao ◽  
Lijun Hao ◽  
...  

2022 ◽  
pp. 143-174
Author(s):  
Bibhu Prasad Ganthia ◽  
Subrat Kumar Barik ◽  
Byamakesh Nayak

The interest towards renewable energy has been enhanced due to zero pollutant emission. Considering the present scenario, wind as a renewable source of energy is highly recommended. As it is freely available and free from pollution, wind can effectively play a role for energy generation. This can produce quality power during grid integrations as the load demands. Due to rapid variations in wind speed, wind energy systems need highly synchronized and powerful controller techniques for power regulations to overcome transients, voltage sags, and swells. A suitable and responsive controller is essential for power generation from wind energy. The controllers for wind energy system are categorized into five controller designs according to their locations to control the demand of the turbine system during grid integrations. In this chapter, various controller designs and implementations are highlighted with reference to previous works and existing studies.


2021 ◽  
Vol 9 (12) ◽  
pp. 51-57
Author(s):  
Kokou SABI ◽  
◽  
Hezouwe SONLA ◽  
Moursalou KORIKO ◽  
Kokou Eric GBEDJANGNI ◽  
...  

The automobile fleet in Togo has increased in the last decades with a patchwork of vehicles that are in majority older than ten (10) years. Until 2019, the car fleet in Togo was almost dependent upon petroleum products, and was consequentlya source of air pollutants emission. Lome is the capital city of Togo with the characteristic of having the highest road traffic volume that significantly impacts air quality. In accordance with the EMEP/EEA air pollutant emission inventory guide and the COPERT method, emissions of carbone monoxide (CO), nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM) are respectively estimated to: 2621.674 tCO 82.444 tNOx 558.778 tNMVOC and 7.241 tPM. In the time series 2010-2019, emissions of CO, NMVOCs and NOx fell overall with average yearly rates by respectively 83,0234 66,4888 and 0,8073 t/year whereas the PM emission rose(0,8208 t/year).


Sign in / Sign up

Export Citation Format

Share Document