Genesis and structural arrangement of the collapsed Oued Gueniche plain and the surrounding folds (Neogene molassic basin of Bizerte, northeastern Tunisia): Insights from gravity data

Author(s):  
Sabrine Zaghdoudi ◽  
Ali Kadri ◽  
Mouna Ben Alayet ◽  
Mohamed Aymen Bounasri ◽  
El Mabrouk Essid ◽  
...  
2020 ◽  
Vol 86 (1) ◽  
pp. 38-43
Author(s):  
Vladimir A. Kim ◽  
Valeriya V. Lysenko ◽  
Anna A. Afanaseva ◽  
Khasan I. Turkmenov

Structural degradation of the material upon long-term thermal and force impacts is a complex process which includes migration of the grain boundaries, diffusion of the active elements of the external and technological environment, hydrogen embrittlement, aging, grain boundary corrosion and other mechanisms. Application of the fractal and multifractal formalism to the description of microstructures opens up wide opportunities for quantitative assessment of the structural arrangement of the material, clarifies and reveals new aspects of the known mechanisms of structural transformations. Multifractal parameterization allows us to study the processes of structural degradation from the images of microstructures and identify structural changes that are hardly distinguishable visually. Any quantitative structural indicator can be used to calculate the multifractal spectra of the microstructure, but the most preferable is that provides the maximum range of variation in the numerical values of the multifractal components. The results of studying structural degradation of steel 15Kh5M upon continuous duty are presented. It is shown that structural degradation of steel during operation under high temperatures and stresses is accompanied by enlargement of the microstructural objects, broadening of the grain boundaries and allocation of the dispersed particles which are represented as point objects in the images. The processes of structural degradation lead to an increase in the range of changes in the components of the multifractal spectra. High values of complex indicators of structural arrangement indicate to an increase in heterogeneity and randomness at the micro-scale level, but at the same time, to manifestation of the ordered combinations of individual submicrostructures. Those structural transformations adapt the material to external impacts and provide the highest reliability and fracture resistance of the material.


1993 ◽  
Author(s):  
R.F. Sikora ◽  
V.E. Langenheim ◽  
Shawn Biehler ◽  
L.A. Beyer ◽  
R.H. Chapman
Keyword(s):  

2017 ◽  
Author(s):  
Paul Wessel ◽  
◽  
Michael T. Chandler ◽  
Brian Taylor ◽  
Elizabeth Benyshek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document