Statistical analysis of earthquake catalogs for seismic hazard studies around the Karliova Triple Junction (eastern Turkey)

Author(s):  
Sherif M. Ali ◽  
Mehveş Feyza Akkoyunlu
Author(s):  
Sarah Azar ◽  
Mayssa Dabaghi

ABSTRACT The use of numerical simulations in probabilistic seismic hazard analysis (PSHA) has achieved a promising level of reliability in recent years. One example is the CyberShake project, which incorporates physics-based 3D ground-motion simulations within seismic hazard calculations. Nonetheless, considerable computational time and resources are required due to the significant processing requirements imposed by source-based models on one hand, and the large number of seismic sources and possible rupture variations on the other. This article proposes to use a less computationally demanding simulation-based PSHA framework for CyberShake. The framework can accurately represent the seismic hazard at a site, by only considering a subset of all the possible earthquake scenarios, based on a Monte-Carlo simulation procedure that generates earthquake catalogs having a specified duration. In this case, ground motions need only be simulated for the scenarios selected in the earthquake catalog, and hazard calculations are limited to this subset of scenarios. To validate the method and evaluate its accuracy in the CyberShake platform, the proposed framework is applied to three sites in southern California, and hazard calculations are performed for earthquake catalogs with different lengths. The resulting hazard curves are then benchmarked against those obtained by considering the entire set of earthquake scenarios and simulations, as done in CyberShake. Both approaches yield similar estimates of the hazard curves for elastic pseudospectral accelerations and inelastic demands, with errors that depend on the length of the Monte-Carlo catalog. With 200,000 yr catalogs, the errors are consistently smaller than 5% at the 2% probability of exceedance in 50 yr hazard level, using only ∼3% of the entire set of simulations. Both approaches also produce similar disaggregation patterns. The results demonstrate the potential of the proposed approach in a simulation-based PSHA platform like CyberShake and as a ground-motion selection tool for seismic demand analyses.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-35 ◽  
Author(s):  
Cecilia I. Nievas ◽  
Julian J. Bommer ◽  
Helen Crowley ◽  
Jan van Elk

Abstract Despite their much smaller individual contribution to the global counts of casualties and damage than their larger counterparts, earthquakes with moment magnitudes Mw in the range 4.0–5.5 may dominate seismic hazard and risk in areas of low overall seismicity, a statement that is particularly true for regions where anthropogenically-induced earthquakes are predominant. With the risk posed by these earthquakes causing increasing alarm in certain areas of the globe, it is of interest to determine what proportion of earthquakes in this magnitude range that occur sufficiently close to population or the built environment do actually result in damage and/or casualties. For this purpose, a global catalogue of potentially damaging events—that is, earthquakes deemed as potentially capable of causing damage or casualties based on a series of pre-defined criteria—has been generated and contrasted against a database of reportedly damaging small-to-medium earthquakes compiled in parallel to this work. This paper discusses the criteria and methodology followed to define such a set of potentially damaging events, from the issues inherent to earthquake catalogue compilation to the definition of criteria to establish how much potential exposure is sufficient to consider each earthquake a threat. The resulting statistics show that, on average, around 2% of all potentially-damaging shocks were actually reported as damaging, though the proportion varies significantly in time as a consequence of the impact of accessibility to data on damage and seismicity in general. Inspection of the years believed to be more complete suggests that a value of around 4–5% might be a more realistic figure.


Lithos ◽  
2020 ◽  
Vol 364-365 ◽  
pp. 105524 ◽  
Author(s):  
Özgür Karaoğlu ◽  
Fatma Gülmez ◽  
Gönenç Göçmengil ◽  
Michele Lustrino ◽  
Paolo Di Giuseppe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document