earthquake scenarios
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 79)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 621
Author(s):  
Andrés Bronfman ◽  
Diego Beneventti G. ◽  
Pamela P. Alvarez ◽  
Samantha Reid ◽  
Germán Paredes-Belmar

We address the problem of picking up, stabilizing, and transporting casualties in response to mass-injury disasters. Our proposed methodology establishes the itinerary for collecting, on-site stabilization, and transporting victims considering capacitated vehicles and medical care centers. Unlike previous works, we minimize the time required to achieve on-site stabilization of each victim according to his age and level of severity of the injuries for their subsequent transfer to specialized medical centers. Thus, more critical patients will be the first to be stabilized, maximizing their chances of survival. In our methodology, the victims’ age, the injuries’ severity level, and their deterioration over time are considered critical factors in prioritizing care for each victim. We tested our approach using simulated earthquake scenarios in the city of Iquique, Chile, with multiple injuries. The results show that explicitly considering the on-site stabilization of the vital functions of the prioritized victims as an objective, before their transfer to a specialized medical center, allows treating and stabilizing patients earlier than with traditional objectives.


Author(s):  
Jaeseok Lee ◽  
Jung-Hun Song ◽  
Seongryong Kim ◽  
Junkee Rhie ◽  
Seok Goo Song

ABSTRACT Accurate and practical ground-motion predictions for potential large earthquakes are crucial for seismic hazard analysis of areas with insufficient instrumental data. Studies on historical earthquake records of the Korean Peninsula suggest that damaging earthquakes are possible in the southeastern region. Yet classical ground-motion prediction methods are limited in considering the physical rupture process and its effects on ground motion in complex velocity structures. In this study, we performed ground-motion simulations based on rigorous physics through pseudodynamic source modeling and wave propagation simulations in a 3D seismic velocity model. Ensembles of earthquake scenarios were generated by emulating the one- and two-point statistics of earthquake source parameters derived from a series of dynamic rupture models. The synthetic seismograms and the distributions of simulated peak ground velocities (PGVs) were compared with the observations of the 2016 Mw 5.4 Gyeongju earthquake in the Korean Peninsula. The effects of surface-wave radiation, rupture directivity, and both local and regional amplifications from the 3D wave propagation were reproduced accurately in the spatial distribution of simulated PGVs, in agreement with the observations from dense seismic networks by mean log residuals of −0.28 and standard deviations of 0.78. Amplifications in ground motions were found in regions having low crustal velocities and in regions of constructive interference from the crustal shear-wave phases associated with postcritical reflections from the Moho discontinuity. We extended the established approach to earthquake scenarios of Mw 6.0, 6.5, and 7.0, at the same location, to provide the distribution of ground motions from potential large earthquakes in the area. Although we demonstrate the value of these simulations, improvements in the accuracy of the 3D seismic velocity model and the scaling relationship of the source models would be necessary for a more accurate estimation of near-source ground motions.


2021 ◽  
Author(s):  
Ruth Amey ◽  
John Elliott ◽  
C. Scott Watson ◽  
Richard Walker ◽  
Marco Pagani ◽  
...  

Many cities are built on or near active faults, which pose seismic hazard and risk to the urban population. This risk is exacerbated by city expansion, which may obscure signs of active faulting. Here we estimate the risk to Bishkek city, Kyrgyzstan, due to realistic earthquake scenarios based on historic earthquakes in the region and improved knowledge of the active faulting. We use previous literature and fault mapping, combined with new high-resolution digital elevation models to identify and characterise faults that pose a risk to Bishkek. We then estimate the hazard (ground shaking), damage to residential buildings and losses (economical cost and fatalities) using the Global Earthquake Model OpenQuake engine. We model historical events and hypothetical events on a variety of faults that could plausibly host significant earthquakes. This includes proximal, recognised, faults as well as a fault under folding in the north of the city that we identify using satellite DEMs. We find that potential earthquakes on faults nearest to Bishkek - Issyk Ata, Shamsi Tunduk, Chonkurchak and the northern fault - would cause the most damage to the city. An Mw 7.5 earthquake on the Issyk Ata fault could potentially cause 7,900 ± 2600 completely damaged buildings, a further 16,400 ± 2000 damaged buildings and 2400 ± 1500 fatalities. It is vital to properly identify, characterise and model active faults near cities as modelling the northern fault as a Mw 6.5 instead of Mw 6.0 would result in 37% more completely damaged buildings and 48% more fatalities.


2021 ◽  
Vol 930 (1) ◽  
pp. 012083
Author(s):  
Fauzan ◽  
A Rifa’i ◽  
S Ismanti

Abstract The Palukoro fault, an active sinistral fault that cuts through Sulawesi Island, was the cause of the earthquake and liquefaction disaster in Palu and Sigi Regency in 2018. A series of studies related to liquefaction have been carried out since then but more focused on the west side of the Palu River. This research will raise the potential for liquefaction on the eastern side of the Palu river, precisely in the sabo dam area at Poi and Bangga River. These rivers are located on the opposite side of the Sibalaya liquefaction area. Liquefaction potential was calculated using the Simplified Procedure Method based on NSPT values. Fifteen and twelve boreholes are located at Bangga and Poi rivers, respectively. The qualitative analysis assessed the criteria of vulnerability based on geological factors, groundwater levels, and seismicity. The Liquefaction Potential Index method was used and calculated using several earthquake scenarios based on historical data and potential earthquakes of The Palu-koro fault. Based on LPI analysis, the Poi River has meager potential at the middle stream area and moderate level potential at the downstream. Bangga River has moderate to high liquefaction potential downstream and low to very low potential at the middle stream.


2021 ◽  
Author(s):  
Raquel Felix ◽  
Judith Hubbard ◽  
Kyle Bradley ◽  
Karen Lythgoe ◽  
Linlin Li ◽  
...  

Abstract. The tsunami hazard posed by the Flores backarc thrust, which runs along the northern coast of the islands of Bali and Lombok, Indonesia, is poorly studied compared to the Sunda megathrust, situated ~250 km to the south of the islands. However, the 2018 Lombok earthquake sequence demonstrated the seismic potential of the western Flores Thrust when a fault ramp beneath the island of Lombok ruptured in two Mw 6.9 earthquakes. Although the uplift in these events mostly occurred below land, the sequence still generated 1–2.5 m-high local tsunamis along the northern coast of Lombok (Wibowo et al., 2021). Historical records show that the Flores fault system in the Lombok and Bali region has generated at least six ≥ Ms 6.5 tsunamigenic earthquakes since 1800 CE. Hence, it is important to assess the possible tsunami hazard represented by this fault system. Here, we focus on the submarine fault segment located between the islands of Lombok and Bali (below the Lombok Strait). We assess modeled tsunami patterns generated by fault slip in six earthquake scenarios (slip of 1–5 m, representing Mw 7.2–7.9+), with a focus on impacts on the capital cities of Mataram, Lombok and Denpasar, Bali, which lie on the coasts facing the strait. We use a geologically constrained earthquake model informed by the Lombok earthquake sequence (Lythgoe et al., 2021), together with a high-resolution bathymetry dataset developed by combining direct measurements from GEBCO with sounding measurements from the official nautical charts for Indonesia. Our results show that fault rupture in this region could trigger a tsunami reaching Mataram in < 8 minutes and Denpasar in ~10–15 minutes, with multiple waves. For an earthquake with 3–5 m of coseismic slip, Mataram and Denpasar experience maximum wave heights of ~1.3–3.3 m and ~0.7 to 1.5 m, respectively. Furthermore, our earthquake models indicate that both cities would experience coseismic subsidence of 20–40 cm, exacerbating their exposure to both the tsunami and other coastal hazards. Overall, Mataram city is more exposed than Denpasar to high tsunami waves arriving quickly from the fault source. To understand how a tsunami would affect Mataram, we model the associated inundation using the 5 m slip model and show that Mataram is inundated ~55–140 m inland along the northern coast and ~230 m along the southern coast, with maximum flow depths of ~2–3 m. Our study highlights that the early tsunami arrival in Mataram, Lombok gives little time for residents to evacuate. Raising their awareness about the potential for locally generated tsunamis and the need for evacuation plans is important to help them respond immediately after experiencing strong ground shaking.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 473
Author(s):  
Yan Zhang ◽  
Zhongliang Wu ◽  
Fabio Romanelli ◽  
Franco Vaccari ◽  
Changsheng Jiang ◽  
...  

In this paper, we discuss a possible combination of Earthquake Early Warning (EEW) and Neo-deterministic Seismic Hazard Assessment (NDSHA), and propose a new warning model, EEW2.0. The aim is to provide a differentiated warning alert to various end-users based on the results of seismic hazard assessment evaluation. The implementation of such a system contains three basic steps: (a) classification of “potential to cause hazard” in terms of magnitude; (b) determination of the source areas and building a hazard database in terms of Modified Mercalli Intensity (MMI) maps, considering all possible earthquake scenarios in the source area, for the whole protected area; (3) equipping unique decision framework for specific end-users. When a damaging earthquake (M ≥ 5.0) is detected, EEW2.0 quickly matches the prepared MMI map by estimated magnitude and epicenter, then directly extracts the MMI value and issues an early warning to the public. With the great attention and resources put into the reduction in seismic and its secondary risk in the 21st century, the proposed EEW2.0 will likely play an active role in protecting lives and reducing economic losses.


2021 ◽  
Author(s):  
Patrick Oswald ◽  
Michael Strasser ◽  
Jens Skapski ◽  
Jasper Moernaut

Abstract. In slowly deforming intraplate tectonic regions such as the Alps only limited knowledge exists on the occurrence of severe earthquakes, their maximum possible magnitude and their potential source areas. This is mainly due to long earthquake recurrence rates exceeding the time span of instrumental earthquake records and historical documentation. Lacustrine paleoseismology aims at retrieving long-term continuous records of seismic shaking. A paleoseismic record from a single lake provides information on events for which seismic shaking exceeded the intensity threshold at the lake site. In addition, when positive and negative evidence for seismic shaking from multiple sites can be gathered for a certain time period, minimum magnitudes and source locations can be estimated for paleo-earthquakes by a reverse application of an empirical intensity prediction equation in a geospatial analysis. Here, we present potential magnitudes and source locations of four paleo-earthquakes in the western Eastern Alps based on the integration of available and updated lake paleoseismic data. The paleoseismic records at Plansee and Achensee covering the last ~10 kyrs were extended towards the age of lake initiation after deglaciation to obtain the longest possible paleoseismic catalogue at each lake site. Our results show that 25 severe earthquakes are recorded in the four lakes Plansee, Piburgersee, Achensee and potentially Starnbergersee over the last ~16 kyrs, from which four earthquakes are interpreted to left imprints in two or more lakes. Earthquake recurrence intervals range from ca. 1,000 to 2,000 years with a weakly periodic to aperiodic recurrence behavior for the individual records. We interpret that relatively shorter recurrence intervals in the more orogen-internal archives Piburgersee and Achensee are related to enhanced tectonic loading, whereas a longer recurrence rate in the more orogen-external archive Plansee might reflect a decreased stress transfer across the current-day enhanced seismicity zone. Plausible epicenters of paleo-earthquake scenarios coincide with the current enhanced seismicity regions. Prehistoric earthquakes with a minimum moment magnitude (MW) 5.8–6.1 might have occurred around the Inn valley, the Brenner region and the Fernpass-Loisach region, and might have reached up to MW 6.3 at Achensee. The paleo-earthquake catalogue might hint at a shift of severe earthquake activity near the Inn valley from east to west to east during Postglacial times. Shakemaps highlight that such severe earthquake scenarios not solely impact the enhanced seismicity region of Tyrol, but widely affect adjacent regions like southern Bavaria in Germany.


2021 ◽  
Vol 873 (1) ◽  
pp. 012054
Author(s):  
I.R. Pranantyo ◽  
A. Cipta ◽  
H.A. Shiddiqi ◽  
M. Heidarzadeh

Abstract We studied the February 23rd, 1969 M7.0 Majene, Sulawesi earthquake and tsunami. It was followed by tsunami reported at five locations. At least 64 people were killed and severe damage on infrastructures were reported in Majene region. Based on damage data, we estimated that the maximum intensity of the earthquake was MMI VIII. Focal mechanisms, derived using first motion polarity analysis, indicated that the earthquake had a thrust mechanism. Furthermore, we built hypothetical earthquake scenarios based on a rectangular fault plane of 40 km × 20 km with a homogeneous slip model of 1.5 m. We run the Open Quake and the JAGURS code to validate the macroseismic and tsunami observation data, respectively. Our best-fitted earthquake model generates maximum intensity of 8+ which is in line with the reported macroseismic data. However, the maximum simulated tsunami height from all scenario earthquakes is 2.25 m which is smaller than the 4 m tsunami height observed at Pelattoang. The possibility of contribution of another mechanism to tsunami generation requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document