scholarly journals Free groups in normal subgroups of the multiplicative group of a division ring

2015 ◽  
Vol 440 ◽  
pp. 128-144 ◽  
Author(s):  
Jairo Z. Gonçalves ◽  
Donald S. Passman
1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).


1981 ◽  
Vol 24 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Narain Gupta

The purpose of this expository article is to familiarize the reader with one of the fundamental problems in the theory of infinite groups. We give an up-to-date account of the so-called Fox problem which concerns the identification of certain normal subgroups of free groups arising out of certain ideals in the free group rings. We assume that the reader is familiar with the elementary concepts of algebra.


1963 ◽  
Vol 15 ◽  
pp. 80-83 ◽  
Author(s):  
I. N. Herstein ◽  
W. R. Scott

Let K be a division ring. A subgroup H of the multiplicative group K′ of K is subnormal if there is a finite sequence (H = A0, A1, . . . , An = K′) of subgroups of K′ such that each Ai is a normal subgroup of Ai+1. It is known (2, 3) that if H is a subdivision ring of K such that H′ is subnormal in K′, then either H = K or H is in the centre Z(K) of K.


Sign in / Sign up

Export Citation Format

Share Document