A Note on the Multiplicative Group of a Division Ring

1997 ◽  
Vol 07 (01) ◽  
pp. 51-53
Author(s):  
Flavio D'Alessandro
1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).


1963 ◽  
Vol 15 ◽  
pp. 80-83 ◽  
Author(s):  
I. N. Herstein ◽  
W. R. Scott

Let K be a division ring. A subgroup H of the multiplicative group K′ of K is subnormal if there is a finite sequence (H = A0, A1, . . . , An = K′) of subgroups of K′ such that each Ai is a normal subgroup of Ai+1. It is known (2, 3) that if H is a subdivision ring of K such that H′ is subnormal in K′, then either H = K or H is in the centre Z(K) of K.


1985 ◽  
Vol 97 (3) ◽  
pp. 415-420
Author(s):  
B. Hartley ◽  
M. A. Shahabi Shojaei

In 1955 [1], Amitsur determined all the finite groups G that can be embedded in the multiplicative group T* = GL(1, T) of some division ring T of characteristic zero. If G can be so embedded, then the rational span of G in T is a division ring of finite dimension over ℚ, and G acts on it by right multiplication in such a way that every non-trivial element operates fixed point freely. The finite groups admitting such a representation had earlier been determined by Zassenhaus[24; 4, XII. 8], and Amitsur begins by quoting Zassenhaus' results, which show in particular that the only perfect group that can be embedded in the multiplicative group of a division ring of characteristic zero is SL(2,5). The more difficult part of Amitsur's paper is the determination of the possible soluble groups. Here the main tool is Hasse's theory of cyclic algebras over number fields.


2001 ◽  
Vol 44 (1) ◽  
pp. 201-213 ◽  
Author(s):  
M. A. Dokuchaev ◽  
S. O. Juriaans ◽  
C. Polcino Milies ◽  
M. L. Sobral Singer

AbstractHerstein showed that the conjugacy class of a non-central element in the multiplicative group of a division ring is infinite. We prove similar results for units in algebras and orders and give applications to group rings.AMS 2000 Mathematics subject classification: Primary 16U60. Secondary 16H05; 16S34; 20F24; 20C05


2009 ◽  
Vol 12 (17) ◽  
pp. 5-11
Author(s):  
Bien Hoang Mai ◽  
Hai Xuan Bui

Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.


2005 ◽  
Vol 15 (01) ◽  
pp. 15-36 ◽  
Author(s):  
VITOR O. FERREIRA ◽  
JAIRO Z. GONÇALVES ◽  
ARNALDO MANDEL

Let D be a division ring with an involution and characteristic different from 2. Then, up to a few exceptions, D contains a pair of symmetric elements freely generating a free subgroup of its multiplicative group provided that (a) it is finite-dimensional and the center has a finite sufficiently large transcendence degree over the prime field, or (b) the center is uncountable, but not algebraically closed in D. Under conditions (a), if the involution is of the first kind, it is also shown that the unitary subgroup of the multiplicative group of D contains a free subgroup, with one exception. The methods developed are also used to exhibit free subgroups in the multiplicative group of a finite-dimensional division ring provided the center has a sufficiently large transcendence degree over its prime field.


Sign in / Sign up

Export Citation Format

Share Document