C-Valuations and Normal C-Orderings

1989 ◽  
Vol 41 (1) ◽  
pp. 14-67 ◽  
Author(s):  
M. Chacron

Let D stand for a division ring (or skewfield), let G stand for an ordered abelian group with positive infinity adjoined, and let ω: D → G. We call to a valuation of D with value group G, if ω is an onto mapping from D to G such that(i) ω(x) = ∞ if and only if x = 0,(ii) ω(x1 + x2) = min(ω (x1), ω (x2)), and(iii) ω (x1 x2) = ω (x1) + ω (x2).Associated to the valuation ω are its valuation ringR = ﹛x ∈ Dω(x) ≧ 0﹜,its maximal idealJ = ﹛x ∈ |ω(x) > 0﹜, and its residue division ring D = R/J.The invertible elements of the ring R are called valuation units. Clearly R and, hence, J are preserved under conjugation so that 1 + J is also preserved under conjugation. The latter is thus a normal subgroup of the multiplicative group Dm of D and hence, the quotient group D˙/1 + J makes sense (the residue group of ω). It enlarges in a natural way the residue division ring D (0 excluded, and addition “forgotten“).

1963 ◽  
Vol 15 ◽  
pp. 80-83 ◽  
Author(s):  
I. N. Herstein ◽  
W. R. Scott

Let K be a division ring. A subgroup H of the multiplicative group K′ of K is subnormal if there is a finite sequence (H = A0, A1, . . . , An = K′) of subgroups of K′ such that each Ai is a normal subgroup of Ai+1. It is known (2, 3) that if H is a subdivision ring of K such that H′ is subnormal in K′, then either H = K or H is in the centre Z(K) of K.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012023
Author(s):  
Y Mahatma ◽  
I Hadi ◽  
Sudarwanto

Abstract Let G be a group and α be an automorphism of G. In 2016, Ganjali and Erfanian introduced the notion of a normal subgroup related to α, called the α-normal subgroup. It is basically known that if N is an ordinary normal subgroup of G then every right coset Ng is actually the left coset gN. This fact allows us to define the product of two right cosets naturally, thus inducing the quotient group. This research investigates the relation between the left and right cosets of the relative normal subgroup. As we have done in the classic version, we then define the product of two right cosets in a natural way and continue with the construction of a, say, relative quotient group.


1997 ◽  
Vol 62 (1) ◽  
pp. 60-78
Author(s):  
Patrick Simonetta

AbstractThis work is inspired by the correspondence of Malcev between rings and groups. Let A be a domain with unit, and S a multiplicative group of invertible elements. We define AS as the structure obtained from A by restraining the multiplication to A × S, and σ(AS) as the group of functions from A to A of the form x → xa + b, where (a, b) belongs to S × A. We show that AS and σ(As) are interpretable in each other, and then, that we can transfer some properties between classes (or theories) of “reduced” domains and corresponding groups, such as being elementary, axiomatisability (for classes), decidability, completeness, or, in some cases, existence of a model-completion (for theories).We study the extensions of the additive group of A by the group S, acting by right multiplication, and show that sometimes σ(AS) is the unique extension of this type. We also give conditions allowing us to eliminate parameters appearing in interpretations.We emphasize the case where the domain is a division ring K and S is its multiplicative group K×. Here, the interpretations can always be done without parameters. If the centre of K contains more than two elements, then σ(K) is the only extension of the additive group of K by its multiplicative group acting by right multiplication, and the class of all such σ(K)'s is elementary and finitely axiomatisable. We give, in particular, an axiomatisation for this class and for the class of σ(K)'s where K is an algebraically closed field of characteristic 0. From these results it follows that some classical model-companion results about theories of fields can be translated and restated as results about theories of solvable groups of class 2.


2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


1968 ◽  
Vol 9 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J. W. Baker

Let H be a group of characters on an (algebraic) abelian group G. In a natural way, we may regard G as a group of characters on H. In this way, we obtain a duality between the two groups G and H. One may pose several problems about this duality. Firstly, one may ask whether there exists a group topology on G for which H is precisely the set of continuous characters. This question has been answered in the affirmative in [1]. We shall say that such a topology is compatible with the duality between G and H. Next, one may ask whether there exists a locally compact group topology on G which is compatible with a given duality and, if so, whether there is more than one such topology. It is this second question (previously considered by other authors, to whom we shall refer below) which we shall consider here.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


Author(s):  
Steven Duplij ◽  
Wend Werner

Abstract We investigate fields in which addition requires three summands. These ternary fields are shown to be isomorphic to the set of invertible elements in a local ring $$\mathcal{R}$$ R having $$\mathbb{Z}\diagup 2\mathbb{Z}$$ Z / 2 Z as a residual field. One of the important technical ingredients is to intrinsically characterize the maximal ideal of $$\mathcal{R}$$ R . We include a number of illustrative examples and prove that the structure of a finite 3‑field is not connected to any binary field.


Sign in / Sign up

Export Citation Format

Share Document