Subgroups of Central Separable Algebras

1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.

1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


1964 ◽  
Vol 16 ◽  
pp. 435-442 ◽  
Author(s):  
Joseph Kohler

In this paper finite groups with the property M, that every maximal subgroup has prime or prime square index, are investigated. A short but ingenious argument was given by P. Hall which showed that such groups are solvable.B. Huppert showed that a finite group with the property M, that every maximal subgroup has prime index, is supersolvable, i.e. the chief factors are of prime order. We prove here, as a corollary of a more precise result, that if G has property M and is of odd order, then the chief factors of G are of prime or prime square order. The even-order case is different. For every odd prime p and positive integer m we shall construct a group of order 2apb with property M which has a chief factor of order larger than m.


2017 ◽  
Vol 16 (11) ◽  
pp. 1750217
Author(s):  
Tianze Li ◽  
Yanjun Liu ◽  
Guohua Qian

Let [Formula: see text] be a finite group and [Formula: see text] be a prime. In this note, we show that if [Formula: see text] and all subgroups of [Formula: see text] of order [Formula: see text] are conjugate, then either [Formula: see text] has a [Formula: see text]-block of defect zero, or [Formula: see text] and [Formula: see text] is a direct product of a simple group [Formula: see text] and an odd order group. This improves one of our previous works.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850186
Author(s):  
S. M. Robati

Let [Formula: see text] be a finite group. We say that an element [Formula: see text] in [Formula: see text] is a vanishing element if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we study the structure of finite groups whose vanishing elements are of odd order.


2010 ◽  
Vol 82 (2) ◽  
pp. 265-273 ◽  
Author(s):  
GIL KAPLAN ◽  
DAN LEVY

AbstractWe observe that a solvability criterion for finite groups, conjectured by Miller [The product of two or more groups, Trans. Amer. Math. Soc.12 (1911)] and Hall [A characteristic property of soluble groups, J. London Math. Soc.12 (1937)] and proved by Thompson [Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc.74(3) (1968)], can be sharpened as follows: a finite group is nonsolvable if and only if it has a nontrivial 2-element and an odd p-element, such that the order of their product is not divisible by either 2 or p. We also prove a solvability criterion involving conjugates of odd p-elements. Finally, we define, via a condition on products of p-elements with p′-elements, a formation Pp,p′, for each prime p. We show that P2,2′ (which contains the odd-order groups) is properly contained in the solvable formation.


2001 ◽  
Vol 71 (2) ◽  
pp. 169-176 ◽  
Author(s):  
John Cossey ◽  
Stewart E. Stonehewer

AbstractThe authors describe the structure of the normal closure of a cyclic permutable subgroup of odd order in a finite group.


2011 ◽  
Vol 10 (05) ◽  
pp. 947-959 ◽  
Author(s):  
MÁRTON HABLICSEK ◽  
GUILLERMO MANTILLA-SOLER

Let G be a finite group. For all a ∈ ℤ, such that (a, |G|) = 1, the function ρa: G → G sending g to ga defines a permutation of the elements of G. Motivated by a recent generalization of Zolotarev's proof of classic quadratic reciprocity, due to Duke and Hopkins, we study the signature of the permutation ρa. By introducing the group of conjugacy equivariant maps and the symmetric difference method on groups, we exhibit an integer dG such that [Formula: see text] for all G in a large class of groups, containing all finite nilpotent and odd order groups.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


Sign in / Sign up

Export Citation Format

Share Document