scholarly journals A 5-Engel associative algebra whose group of units is not 5-Engel

2019 ◽  
Vol 519 ◽  
pp. 101-110
Author(s):  
Galina Deryabina ◽  
Alexei Krasilnikov
2005 ◽  
Vol 71 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Thorsten Bauer ◽  
Salvatore Siciliano

In this paper we examine some properties of the Carter subgroups in the group of units of certain associative algebras. A description of the Carter subgroups in the case of a solvable associative algebra is obtained. Moreover, given an associative algebra A, we study relationships between the Cartan subalgebras of the Lie algebra associated with A and the Carter subgroups of the group of units of A.


2020 ◽  
Vol 4 ◽  
pp. 75-82
Author(s):  
D.Yu. Guryanov ◽  
◽  
D.N. Moldovyan ◽  
A. A. Moldovyan ◽  

For the construction of post-quantum digital signature schemes that satisfy the strengthened criterion of resistance to quantum attacks, an algebraic carrier is proposed that allows one to define a hidden commutative group with two-dimensional cyclicity. Formulas are obtained that describe the set of elements that are permutable with a given fixed element. A post-quantum signature scheme based on the considered finite non-commutative associative algebra is described.


1992 ◽  
Vol 45 (3) ◽  
pp. 503-506 ◽  
Author(s):  
R.K. Sharma ◽  
Vikas Bist

Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


2011 ◽  
Vol 328 (1) ◽  
pp. 287-300 ◽  
Author(s):  
Martina Balagović ◽  
Anirudha Balasubramanian

2017 ◽  
Vol 27 (08) ◽  
pp. 1027-1040 ◽  
Author(s):  
Galina Deryabina ◽  
Alexei Krasilnikov

Let [Formula: see text] be a field of characteristic [Formula: see text] and let [Formula: see text] be a unital associative [Formula: see text]-algebra. Define a left-normed commutator [Formula: see text] [Formula: see text] recursively by [Formula: see text], [Formula: see text] [Formula: see text]. For [Formula: see text], let [Formula: see text] be the two-sided ideal in [Formula: see text] generated by all commutators [Formula: see text] ([Formula: see text]. Define [Formula: see text]. Let [Formula: see text] be integers such that [Formula: see text], [Formula: see text]. Let [Formula: see text] be positive integers such that [Formula: see text] of them are odd and [Formula: see text] of them are even. Let [Formula: see text]. The aim of the present note is to show that, for any positive integers [Formula: see text], in general, [Formula: see text]. It is known that if [Formula: see text] (that is, if at least one of [Formula: see text] is even), then [Formula: see text] for each [Formula: see text] so our result cannot be improved if [Formula: see text]. Let [Formula: see text]. Recently, Dangovski has proved that if [Formula: see text] are any positive integers then, in general, [Formula: see text]. Since [Formula: see text], Dangovski’s result is stronger than ours if [Formula: see text] and is weaker than ours if [Formula: see text]; if [Formula: see text], then [Formula: see text] so both results coincide. It is known that if [Formula: see text] (that is, if all [Formula: see text] are odd) then, for each [Formula: see text], [Formula: see text] so in this case Dangovski’s result cannot be improved.


1997 ◽  
Vol 12 (38) ◽  
pp. 2963-2974
Author(s):  
A. E. F. Djemai

Given an associative algebra A generated by {ek, k=1, 2,…} and with an internal law of type: [Formula: see text], we first show that it is possible to construct a quantum bi-algebra [Formula: see text] with unit and generated by (non-necessarily commutative) elements [Formula: see text] satisfying the relations: [Formula: see text]. This leads one to define a quantum homomorphism[Formula: see text]. We then treat the example of the algebra of functions on a set of N elements and we show, for the case N=2, that the resulting bihyphen;algebra is an inhomogeneous quantum group. We think that this method can be used to construct quantum inhomogeneous groups.


2015 ◽  
Vol 25 (04) ◽  
pp. 633-668
Author(s):  
Mark V. Lawson ◽  
Alistair R. Wallis

The first author showed in a previous paper that there is a correspondence between self-similar group actions and a class of left cancellative monoids called left Rees monoids. These monoids can be constructed either directly from the action using Zappa–Szép products, a construction that ultimately goes back to Perrot, or as left cancellative tensor monoids from the covering bimodule, utilizing a construction due to Nekrashevych. In this paper, we generalize the tensor monoid construction to arbitrary bimodules. We call the monoids that arise in this way Levi monoids and show that they are precisely the equidivisible monoids equipped with length functions. Left Rees monoids are then just the left cancellative Levi monoids. We single out the class of irreducible Levi monoids and prove that they are determined by an isomorphism between two divisors of its group of units. The irreducible Rees monoids are thereby shown to be determined by a partial automorphism of their group of units; this result turns out to be significant since it connects irreducible Rees monoids directly with HNN extensions. In fact, the universal group of an irreducible Rees monoid is an HNN extension of the group of units by a single stable letter and every such HNN extension arises in this way.


Sign in / Sign up

Export Citation Format

Share Document