Slit3 Knockout Mice with Congenital Diaphragmatic Hernia Develop Pulmonary Arterial Hypertension and Abnormal Vascular Remodeling

2014 ◽  
Vol 219 (3) ◽  
pp. S72-S73
Author(s):  
Michael R. Phillips ◽  
Jin Li ◽  
Clara H. Lee ◽  
Yueh Z. Lee ◽  
J.S. Marron ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
G R T Ryanto ◽  
K Ikeda ◽  
K Miyagawa ◽  
K Yagi ◽  
Y Suzuki ◽  
...  

Abstract Introduction Pulmonary Arterial Hypertension (PAH) is marked by vascular remodeling process that eventually causes pressure increase. Endothelial cells (EC) dysfunction is known to be a major cause for pulmonary vascular remodeling; however, the molecular mechanism remains to be elucidated. Purpose This study aims to identify novel genes and mechanisms involved in PAH development. Methods We performed DNA microarray analysis using RNA samples isolated from human ECs of various vascular beds (including lung microvessels) and organs (including lung). We subsequently searched for genes highly and specifically expressed in lung microvessels since these genes are likely involved in pulmonary circulation homeostasis maintenance. Once found, we confirmed its expressional changes during hypoxia in ECs and lung tissues. We next analyzed its role in EC functions using human pulmonary artery ECs (hPAECs) by in vitro angiogenesis assay, using both candidate gene overexpression via retrovirus transfection and treatment with its active form using appropriate recombinant protein. To explore the role of candidate gene in PAH development in vivo, we generated EC-specific knockout mice and transgenic mice in which the candidate gene is genetically deleted and activated in ECs, respectively. PAH was induced by chronic hypoxia exposure (10% O2- for 3 weeks). Lastly, to explore the underlying mechanisms, we analyzed expressional alterations in possible signaling pathways in ECs that could relate with the effect of the candidate gene. Results From microarray analysis, we identified inhibin Beta-A (INHBA) as a candidate gene that was highly and specifically expressed in human lung microvascular ECs. INHBA homo-dimerization is known to produce activin A (ActA), a TGF-beta superfamily member. Hypoxia exposure caused significant decrease of INHBA mRNA expression in ECs and mouse lung tissues. Both INHBA overexpression and ActA-treatment in hPAECs caused dramatic reduction of their angiogenic capacities (reduced migration and tube formation capability with increased apoptosis). In vivo, EC-specific INHBA overexpressing mice (VEcad-INHBA-TG) showed exacerbated hypoxia-induced PAH, assessed by higher right ventricular systolic pressure (RVSP) and more severely remodeled pulmonary arteries. By contrast, EC-specific INHBA knockout mice (INHBA-floxed/VEcad-Cre-TG) showed significant amelioration of PAH, shown by reduced RVSP and vascular remodeling. Furthermore, we found that INHBA overexpression and ActA-treatment induced a marked reduction of BMPRII, known to play pivotal roles in PAH, in hPAECs by accelerating its lysosomal degradation. Conclusion We identified a novel gene that is crucially involved in PAH development. INHBA and/or ActA negatively regulates EC functions potentially through its BMPRII-altering capability. Gain- and loss-of-function studies in mice revealed that INHBA pathways are promising therapeutic targets for the treatment of PAH.


2015 ◽  
Vol 45 (5) ◽  
pp. 572-577 ◽  
Author(s):  
E. Spaggiari ◽  
J. J. Stirnemann ◽  
P. Sonigo ◽  
N. Khen-Dunlop ◽  
L. De Saint Blanquat ◽  
...  

Author(s):  
◽  
Eptisam lambu

Pulmonary arterial hypertension (PAH) is a rare multifactorial disease characterized by abnormal high blood pressure in the pulmonary artery, or increased pulmonary vascular resistance (PVR), caused by obstruction in the small arteries of the lung. Increased PVR is also thought to be caused by abnormal vascular remodeling, due to thickening of the pulmonary vascular wall resulting from significant hypertrophy of pulmonary arterial smooth-muscle cells (PASMCs) and increased proliferation/impaired apoptosis of pulmonary arterial endothelial cells (PAECs). Herein, we investigated the mechanisms and explored molecular pathways mediating the lung pathogenesis in two PAH rat models: Monocrotaline (MCT) and Sugen5416/Hypoxia (SuHx). We analyzed these disease models to determine where the vasculature shows the most severe PAH pathology and which model best recapitulates the human disease. We investigated the role vascular remodeling, hypoxia, cell proliferation, apoptosis, DNA damage and inflammation play in the pathogenesis of PAH. Neither model recapitulated all features of the human disease, however each model presented with some of the pathology seen in PAH patients.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 795
Author(s):  
Maria Callejo ◽  
Daniel Morales-Cano ◽  
Gema Mondejar-Parreño ◽  
Bianca Barreira ◽  
Sergio Esquivel-Ruiz ◽  
...  

Background: Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH.


Sign in / Sign up

Export Citation Format

Share Document