Automatic gravity modeling of sedimentary basins by means of polygonal source geometry and exponential density contrast variation: Two space domain based algorithms

2016 ◽  
Vol 124 ◽  
pp. 54-61 ◽  
Author(s):  
V. Chakravarthi ◽  
M. Pramod Kumar ◽  
B. Ramamma ◽  
S. Rajeswara Sastry
Geophysics ◽  
1993 ◽  
Vol 58 (8) ◽  
pp. 1074-1083 ◽  
Author(s):  
D. Bhaskara Rao ◽  
M. J. Prakash ◽  
N. Ramesh Babu

The decrease of density contrast in sedimentary basins can often be approximated by an exponential function. Theoretical Fourier transforms are derived for symmetric trapezoidal, vertical fault, vertical prism, syncline, and anticline models. This is desirable because there are no equivalent closed form solutions in the space domain for these models combined with an exponential density contrast. These transforms exhibit characteristic minima, maxima, and zero values, and hence graphical methods have been developed for interpretation of model parameters. After applying end corrections to improve the discrete transforms of observed gravity data, the transforms are interpreted for model parameters. This method is first tested on two synthetic models, then applied to gravity anomalies over the San Jacinto graben and Los Angeles basin.


2015 ◽  
Vol 18 (3) ◽  
pp. 36-46
Author(s):  
Toan Phuoc Luong ◽  
Liet Van Dang

A program of genetic algorithm has been developed to estimate the depth of a 2-D sedimentary basin whose density contrast varies with depth according to a parabolic law. The model was built consisting of 2-D vertical juxtaposed prisms. Depths of the prisms, computed by genetic algorithm based on random values and optimal depths were finally found after many generations of evolution. The genetic algorithm using the fitness function was combined by root mean square error of data and "norm" model and the latter was multiplied by a Tikhonov regularization parameter to stabilize the solutions. Firstly, the method was tested on a model and its result were coincident with the model. Secondly, it was applied to interprete a profile of gravity anomaly in Mekong Delta. The results showed that the calculate and observed gravity anomalies were well fitted.


Sign in / Sign up

Export Citation Format

Share Document