Automatic 3-D gravity modeling of sedimentary basins with density contrast varying parabolically with depth

2004 ◽  
Vol 30 (6) ◽  
pp. 601-607 ◽  
Author(s):  
V. Chakravarthi ◽  
N. Sundararajan
2015 ◽  
Vol 18 (3) ◽  
pp. 36-46
Author(s):  
Toan Phuoc Luong ◽  
Liet Van Dang

A program of genetic algorithm has been developed to estimate the depth of a 2-D sedimentary basin whose density contrast varies with depth according to a parabolic law. The model was built consisting of 2-D vertical juxtaposed prisms. Depths of the prisms, computed by genetic algorithm based on random values and optimal depths were finally found after many generations of evolution. The genetic algorithm using the fitness function was combined by root mean square error of data and "norm" model and the latter was multiplied by a Tikhonov regularization parameter to stabilize the solutions. Firstly, the method was tested on a model and its result were coincident with the model. Secondly, it was applied to interprete a profile of gravity anomaly in Mekong Delta. The results showed that the calculate and observed gravity anomalies were well fitted.


Geophysics ◽  
1993 ◽  
Vol 58 (8) ◽  
pp. 1074-1083 ◽  
Author(s):  
D. Bhaskara Rao ◽  
M. J. Prakash ◽  
N. Ramesh Babu

The decrease of density contrast in sedimentary basins can often be approximated by an exponential function. Theoretical Fourier transforms are derived for symmetric trapezoidal, vertical fault, vertical prism, syncline, and anticline models. This is desirable because there are no equivalent closed form solutions in the space domain for these models combined with an exponential density contrast. These transforms exhibit characteristic minima, maxima, and zero values, and hence graphical methods have been developed for interpretation of model parameters. After applying end corrections to improve the discrete transforms of observed gravity data, the transforms are interpreted for model parameters. This method is first tested on two synthetic models, then applied to gravity anomalies over the San Jacinto graben and Los Angeles basin.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. G23-G34 ◽  
Author(s):  
João B. C. Silva ◽  
Darcicléa F. Santos

We have developed a novel approach to compute, in an efficient and versatile way, the gravity anomaly produced by an arbitrary, discrete 3D distribution of density contrast. The method allows adjustable precision and is particularly suited for the interpretation of sedimentary basins. Because the gravity field decays with the square of the distance, we use a discrete Green’s operator that may be made much smaller than the whole study area. For irregularly positioned observations, this discrete Green’s operator must be computed just at the first iteration, and because each of its horizontal layers presents a center of symmetry, only one-eighth of its total elements need to be calculated. Furthermore, for gridded data on a plane, this operator develops translation symmetry for the whole region of interest and has to be computed just once for a single arbitrary observation position. The gravity anomaly is obtained as the product of this small operator by any arbitrary density contrast distribution in a convolution-like operation. We use the proposed modeling to estimate the basement relief of a [Formula: see text] basin with density contrast varying along [Formula: see text] only using a smaller Green’s operator at all iterations. The median of the absolute differences between relief estimates, using the small and a large operator (the latter covering the whole basin) has been approximately 9 m for a 3.6 km deep basin. We also successfully inverted the anomaly of a simulated basin with density contrast varying laterally and vertically, and a real anomaly produced by a steeply dipping basement. The proposed modeling is very fast. For 10,000 observations gridded on a plane, the inversion using the proposed approach for irregularly spaced data is two orders of magnitude faster than using an analytically derived fitting, and this ratio increases enormously with the number of observations.


2021 ◽  
Vol 40 (5) ◽  
pp. 16-32
Author(s):  
A.M. Petrishchevsky ◽  

Spatial distributions of gravity sources and density contrast of geological media, which is reflected by the values of parameter μz , into the crust and upper mantle of Northeast China are analyzed. Features of rheological layering of the tectonosphere and deep spatial relationships of tectonic structures (cratonic blocks, marginal terranes, and sedimentary basins) are defined. In the density contrast distributions the formal signs of Paleozoic subduction of the North-China Craton and Mesozoic subduction of the Pacific Plate under the Amurian Plate were revealed. Crustal deformations are in sharp contrast with upper mantle deformations in structural planes resulting from different directions of tectonic stresses in the Paleozoic and Mesozoic. Thrusting of marginal terranes (Jamusi, Khanka) over the Amurian Plate lithosphere is revealed. Rheology and deep structure of North East China bear many similarities to other regions of the Pacific western margin in Asia and Australia.


Sign in / Sign up

Export Citation Format

Share Document