basement depth
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 54 (2D) ◽  
pp. 113-124
Author(s):  
Ali M. Al-Rahim

Tectonic depression area within and/or beside widespread basin is regarded as an important location for sub-basin sedimentary sequence of Iraq which may represent an excellent accumulation of bounded sediments. Al-Ma'aniyah depression, southwest Iraq is one of such type of sub-basin. Free-air gravity data show a NS extend of this depression inside Saudi Arabia. This work focuses on studying and multi-2.5D model creation for the depression in the Iraqi territory part using Bouguer gravity data and mapping its basement relief. Firstly, the exact boundary of the depression was outlined utilizing the Free-Air gravity data. Then, a precise selection of regional field for the study area was determined by using the power spectrum method, which accordingly defines the residual anomalies that could represent structural enclosures. Many positive anomalies were assigned and enhanced using vertical and total horizontal derivatives, where they were interpreted as basement-related features. Subsequently, a 2.5D multi modeling and depth inversion for the Bouguer gravity data were accomplished by converting the gravity map to a stacked profiles depth map. A nineteen gravity profiles, which cover the study area, were modeled by assuming 2D intra-sedimentary bodies. These bodies were best presented by a 3D view that clarifies the nature of the subsurface modeled structures. The modeling shows an extra density at the northern part of the depression, in contrast, it suggests low density bodies at its southern part, the case that appears inconsistent with a previously performed magnetic interpretation. The inversion of gravity data shows that the basement depth at Al-Ma'aniyah depression ranges from 7.5 to10 km.


2021 ◽  
Author(s):  
Qing Chen ◽  
Yunpeng Dong ◽  
Xianfeng Tan ◽  
Jiabei Wang ◽  
Xiaoyu Huang ◽  
...  

2021 ◽  
Vol 880 (1) ◽  
pp. 012007
Author(s):  
Chia Jing Hwee ◽  
Farouq Jamil ◽  
Akhmal Sidek ◽  
Zaidi Jaafar ◽  
Radzuan Junin ◽  
...  

Abstract The aim of gravity survey is to assist in the detection and delineation of subsurface geological features such as salt domes and faults. In this study, free air anomaly (FAA) data was adopted for mapping and modelling process to delineate subsurface geological features and basement depth in Malay Basin. FAA is the measured gravity anomaly after a free air correction is applied, and it is used for elevation correction. The data of FAA in this study is obtained from Earth Gravitational Model (EGM) 2008 released by the National Geospatial-Intelligence Agency (NGA)-EGM Development Team. Oasis Montaj software was used in the mapping and modelling process whereby the base map which constructed by the Oasis Montaj is used to form the FAA map of Malay Basin. Typically, the positive anomaly is associated with the high-density intrusion at the base of the crust, while in contrast (negative anomaly), it is related to the sedimentary basin in the upper crust. On top of that, the regional-residual anomaly, total horizontal derivative (THD) and 3D Euler Deconvolution enhanced maps were produced and interpreted to acquire comprehensive insight of subsurface geological features. To conclude, this study showed 5% deviation as compared to previous reported works and the deepest basement depth encountered is 14.5 km.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amir Sadeghi-Bagherabadi

We compiled a dataset of continuous recordings from the temporary and permanent seismic networks to compute the high-resolution 3D S-wave velocity model of the Southeastern Alps, the western part of the external Dinarides, and the Friuli and Venetian plains through ambient noise tomography. Part of the dataset is recorded by the SWATH-D temporary network and permanent networks in Italy, Austria, Slovenia and Croatia between October 2017 and July 2018. We computed 4050 vertical component cross-correlations to obtain the empirical Rayleigh wave Green’s functions. The dataset is complemented by adopting 1804 high-quality correlograms from other studies. The fast-marching method for 2D surface wave tomography is applied to the phase velocity dispersion curves in the 2–30 s period band. The resulting local dispersion curves are inverted for 1D S-wave velocity profiles using the non-perturbational and perturbational inversion methods. We assembled the 1D S-wave velocity profiles into a pseudo-3D S-wave velocity model from the surface down to 60 km depth. A range of iso-velocities, representing the crystalline basement depth and the crustal thickness, are determined. We found the average depth over the 2.8–3.0 and 4.1–4.3 km/s iso-velocity ranges to be reasonable representations of the crystalline basement and Moho depths, respectively. The basement depth map shows that the shallower crystalline basement beneath the Schio-Vicenza fault highlights the boundary between the deeper Venetian and Friuli plains to the east and the Po-plain to the west. The estimated Moho depth map displays a thickened crust along the boundary between the Friuli plain and the external Dinarides. It also reveals a N-S narrow corridor of crustal thinning to the east of the junction of Giudicarie and Periadriatic lines, which was not reported by other seismic imaging studies. This corridor of shallower Moho is located beneath the surface outcrop of the Permian magmatic rocks and seems to be connected to the continuation of the Permian magmatism to the deep-seated crust. We compared the shallow crustal velocities and the hypocentral location of the earthquakes in the Southern foothills of the Alps. It revealed that the seismicity mainly occurs in the S-wave velocity range between ∼3.1 and ∼3.6 km/s.


2021 ◽  
Author(s):  
Komal Rani

<p>Gadag schist belt, India is known for sulphide-gold mineralization. In the study area mineralization is controlled structurally and lithologically. In this context, Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) Visible Near InfraRed (VNIR) - Shortwave Infrared (SWIR) bands were utilized to derive alteration zones and structures present in the study area. Lithological boundaries have also been updated using AVIRIS-NG VNIR-SWIR bands derived images enhancement products i.e. Minimum Noise Fraction (MNF) and False Colour Composite (FCC). Further, image spectra of alteration zones (Hydrous mineral etc.) derived from AVIRIS-NG calibrated VNIR-SWIR bands were compared with the standard corresponding reference library spectra (USGS, JPL spectral library). These image spectra have been utilized to demarcate the alteration zones using the Matched Filtering spectral mapping method. Structures were demarcated using high pass (HP) filtered image and FCC images. Low pass (LP) filter image and along with MNF & FCC image composite were utilized to update the lithological boundaries in the study area.</p><p>Ground gravity data has also been processed to derive the subsurface evidences relevant to the deposit in the present study area. Subsurface structures which are responsible for the transportation of mineral rich fluid in the near subsurface are delineated using the gravity data derived products. Apart from this, basement depths are also derived from the gravity data which are being utilized for the validation as well as to further precise the locations of mineral deposits.  These subsurface structures (gravity data), lithology, lineament density and alteration zones are very important evidential layers which have been integrated using fuzzy logic integration techniques to identify potential zones of gold-sulphide mineralization in the present study area. The prospective zones are validated using the secondary data and basement depth derived from the gravity data.</p><p>For similar kind of gold-sulphide mineralization, AVIRIS-NG data and Gravity data can be used to derive the important evidential layers in any part of the world. There are only few studies where such integration approach has been utilized to explore new potential zones of gold sulphide mineralization. </p><p>Keywords: AVIRIS-NG, VNIR-SWIR, alteration, MNF, FCC, Gravity, Basement Depth</p>


Sign in / Sign up

Export Citation Format

Share Document