Seismic spectral decomposition using short-time fractional Fourier transform spectrograms

2021 ◽  
pp. 104400
Author(s):  
Lin Tian
2020 ◽  
Vol 68 ◽  
pp. 3280-3295 ◽  
Author(s):  
Jun Shi ◽  
Jiabin Zheng ◽  
Xiaoping Liu ◽  
Wei Xiang ◽  
Qinyu Zhang

Author(s):  
Dinesh Bhatia ◽  
Animesh Mishra

The role of ECG analysis in the diagnosis of cardio-vascular ailments has been significant in recent times. Although effective, the present computational algorithms lack accuracy, and no technique till date is capable of predicting the onset of a CVD condition with precision. In this chapter, the authors attempt to formulate a novel mapping technique based on feature extraction using fractional Fourier transform (FrFT) and map generation using self-organizing maps (SOM). FrFT feature extraction from the ECG data has been performed in a manner reminiscent of short time Fourier transform (STFT). Results show capability to generate maps from the isolated ECG wavetrains with better prediction capability to ascertain the onset of CVDs, which is not possible using conventional algorithms. Promising results provide the ability to visualize the data in a time evolution manner with the help of maps and histograms to predict onset of different CVD conditions and the ability to generate the required output with unsupervised training helping in greater generalization than previous reported techniques.


2021 ◽  
Vol 24 (3) ◽  
pp. 667-688
Author(s):  
Ramanathan Kamalakkannan ◽  
Rajakumar Roopkumar ◽  
Ahmed Zayed

Abstract In this paper, we introduce a short-time coupled fractional Fourier transform (scfrft) using the kernel of the coupled fractional Fourier transform (cfrft). We then prove that it satisfies Parseval’s relation, derive its inversion and addition formulas, and characterize its range on ℒ 2(ℝ2). We also study its time delay and frequency shift properties and conclude the article by a derivation of an uncertainty principle for both the coupled fractional Fourier transform and short-time coupled fractional Fourier transform.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1906-1916 ◽  
Author(s):  
Avijit Chakraborty ◽  
David Okaya

Spectral analysis is an important signal processing tool for seismic data. The transformation of a seismogram into the frequency domain is the basis for a significant number of processing algorithms and interpretive methods. However, for seismograms whose frequency content vary with time, a simple 1-D (Fourier) frequency transformation is not sufficient. Improved spectral decomposition in frequency‐time (FT) space is provided by the sliding window (short time) Fourier transform, although this method suffers from the time‐ frequency resolution limitation. Recently developed transforms based on the new mathematical field of wavelet analysis bypass this resolution limitation and offer superior spectral decomposition. The continuous wavelet transform with its scale‐translation plane is conceptually best understood when contrasted to a short time Fourier transform. The discrete wavelet transform and matching pursuit algorithm are alternative wavelet transforms that map a seismogram into FT space. Decomposition into FT space of synthetic and calibrated explosive‐source seismic data suggest that the matching pursuit algorithm provides excellent spectral localization, and reflections, direct and surface waves, and artifact energy are clearly identifiable. Wavelet‐based transformations offer new opportunities for improved processing algorithms and spectral interpretation methods.


Sign in / Sign up

Export Citation Format

Share Document