scholarly journals Precipitation, cloud cover and Forbush decreases in galactic cosmic rays

2004 ◽  
Vol 66 (13-14) ◽  
pp. 1135-1142 ◽  
Author(s):  
D.R Kniveton
Solar Physics ◽  
2020 ◽  
Vol 295 (2) ◽  
Author(s):  
Anamarija Kirin ◽  
Bojan Vršnak ◽  
Mateja Dumbović ◽  
Bernd Heber

2006 ◽  
Vol 6 (3) ◽  
pp. 5543-5583 ◽  
Author(s):  
J. Kazil ◽  
E. R. Lovejoy ◽  
M. C. Barth ◽  
K. O’Brien

Abstract. We investigate formation of sulfate aerosol in the marine troposphere from neutral and charged nucleation of H2SO4 and H2O. A box model of neutral and charged aerosol processes is run on a grid covering the oceans. Input data are taken from a model of galactic cosmic rays in the atmosphere, and from global chemistry and transport models. We find a weak aerosol production over the tropical oceans in the lower and middle troposphere, and a stronger production at higher latitudes, most notably downwind of industrial regions. The highest aerosol production, however, occurs in the upper troposphere, in particular in the tropics. This finding supports the proposition by which non-sea salt marine boundary layer aerosol in tropical regions does not form in situ, but nucleates in the upper troposphere from convectively lifted and cloud processed boundary layer air rich in aerosol precursor gases, from where it descends in subsiding air masses compensating convection. Convection of boundary layer air also appears to drive the formation of condensation nuclei in the tropical upper troposphere which maintains the stratospheric aerosol layer in the absence of volcanic activity. Neutral nucleation contributes only marginally to aerosol production in our simulations. This highlights the importance of charged binary and of ternary nucleation involving ammonia for aerosol formation. In clean marine regions however, ammonia concentrations seem too low to support ternary nucleation, making binary nucleation from ions a likely pathway for sulfate aerosol formation. On the other hand, our analysis indicates that the variation of ionization by galactic cosmic rays over the decadal solar cycle does not entail a response in aerosol production and cloud cover via the second indirect aerosol effect that would explain observed variations in global cloud cover. We estimate that the variation in radiative forcing resulting from a response of clouds to the change in galactic cosmic ray ionization and subsequent aerosol production over the decadal solar cycle is smaller than the concurrent variation of total solar irradiance.


2021 ◽  
Vol 7 (1) ◽  
pp. 84-97
Author(s):  
Valery Yanchukovsky

Using the results of continuous long-term observations over 50 years (including solar cycles 20–24), we study the relationship between Earth’s seismicity and solar activity. An increase in the number of strong earthquakes on the planet occurs during the decline phase of solar activity when charged particle fluxes from high-latitude coronal holes increase, as well as during solar minimum when the intensity of galactic cosmic rays reaches a maximum. The change in the number of strong earthquakes (with magnitude 6) is considered in terms of variations in the intensity of galactic cosmic rays, Forbush decreases, and ground level enhancements in solar cosmic rays (GLE events). The number of strong earthquakes is shown to increase after Forbush decreases with a time lag from ~1 to ~6 days depending on the amplitude of Forbush decrease and after GLE events the number of strong earthquakes increases by ~8 day. In the number of strong earthquakes, a six-month variation is observed, which seems to follow the six-month variation in cosmic rays with a delay of ~1–2 months. It is surmised that the relationship between solar activity and Earth’s seismicity seems to be mediated through the modulation of galactic cosmic rays and atmospheric processes that provoke the occurrence of earthquakes in regions where the situation has already been prepared by tectonic activity.


Sign in / Sign up

Export Citation Format

Share Document