scholarly journals Global Sturm inequalities for the real zeros of the solutions of the Gauss hypergeometric differential equation

2007 ◽  
Vol 148 (1) ◽  
pp. 92-110 ◽  
Author(s):  
Alfredo Deaño ◽  
Javier Segura
1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


Geophysics ◽  
2021 ◽  
pp. 1-53
Author(s):  
Jiangtao Hu ◽  
Jianliang Qian ◽  
Jian Song ◽  
Min Ouyang ◽  
Junxing Cao ◽  
...  

Seismic waves in earth media usually undergo attenuation, causing energy losses and phase distortions. In the regime of high-frequency asymptotics, a complex-valued eikonal is an essential ingredient for describing wave propagation in attenuating media, where the real and imaginary parts of the eikonal function capture dispersion effects and amplitude attenuation of seismic waves, respectively. Conventionally, such a complex-valued eikonal is mainly computed either by tracing rays exactly in complex space or by tracing rays approximately in real space so that the resulting eikonal is distributed irregularly in real space. However, seismic data processing methods, such as prestack depth migration and tomography, usually require uniformly distributed complex-valued eikonals. Therefore, we propose a unified framework to Eulerianize several popular approximate real-space ray-tracing methods for complex-valued eikonals so that the real and imaginary parts of the eikonal function satisfy the classical real-space eikonal equation and a novel real-space advection equation, respectively, and we dub the resulting method the Eulerian partial-differential-equation method. We further develop highly efficient high-order methods to solve these two equations by using the factorization idea and the Lax-Friedrichs weighted essentially non-oscillatory (WENO) schemes. Numerical examples demonstrate that the proposed method yields highly accurate complex-valued eikonals, analogous to those from ray-tracing methods. The proposed methods can be useful for migration and tomography in attenuating media.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 262 ◽  
Author(s):  
Shengfeng Li ◽  
Yi Dong

In this paper, we expound on the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation with the polynomial term. The general solutions of this equation are obtained in the form of k-hypergeometric series based on the Frobenius method. Lastly, we employ the result of the theorem to find the solutions of several non-homogeneous k-hypergeometric differential equations.


2010 ◽  
Vol 21 (02) ◽  
pp. 145-155 ◽  
Author(s):  
P. ROMÁN ◽  
S. SIMONDI

The matrix valued analog of the Euler's hypergeometric differential equation was introduced by Tirao in [4]. This equation arises in the study of matrix valued spherical functions and in the theory of matrix valued orthogonal polynomials. The goal of this paper is to extend naturally the number of parameters of Tirao's equation in order to get a generalized matrix valued hypergeometric equation. We take advantage of the tools and strategies developed in [4] to identify the corresponding matrix hypergeometric functions nFm. We prove that, if n = m + 1, these functions are analytic for |z| < 1 and we give a necessary condition for the convergence on the unit circle |z| = 1.


1986 ◽  
Vol 9 (2) ◽  
pp. 405-408 ◽  
Author(s):  
A. K. Bose

Associated with each linear homogeneous differential equationy(n)=∑i=0n−1ai(x)y(i)of ordernon the real line, there is an equivalent integral equationf(x)=f(x0)+∫x0xh(u)du+∫x0x[∫x0uGn−1(u,v)a0(v)f(v)dv]duwhich is satisfied by each solutionf(x)of the differential equation.


Sign in / Sign up

Export Citation Format

Share Document