generalized matrix
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 74)

H-INDEX

26
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3194
Author(s):  
Natalia Bakhtadze ◽  
Igor Yadikin

The stability of bilinear systems is investigated using spectral techniques such as selective modal analysis. Predictive models of bilinear systems based on inductive knowledge extracted by big data mining techniques are applied with associative search of statistical patterns. A method and an algorithm for the elementwise solution of the generalized matrix Lyapunov equation are developed for discrete bilinear systems. The method is based on calculating the sequence of values of a fixed element of the solution matrix, which depends on the product of the eigenvalues of the dynamics matrix of the linear part and the elements of the nonlinearity matrixes. A sufficient condition for the convergence of all sequences is obtained, which is also a BIBO (bounded input bounded output) systems stability condition for the bilinear system.


Author(s):  
Anatoly Beletsk ◽  

The article discusses various options for constructing binary generators of pseudo-random numbers (PRN) based on the so-called generalized Galois and Fibonacci matrices. The terms "Galois matrix" and "Fibonacci matrix" are borrowed from the theory of cryptography, in which the linear feedback shift registers (LFSR) generators of the PRN according to the Galois and Fibonacci schemes are widely used. The matrix generators generate identical PRN sequences as the LFSR generators. The transition from classical to generalized matrix PRN generators (PRNG) is accompanied by expanding the variety of generators, leading to a significant increase in their cryptographic resistance. This effect is achieved both due to the rise in the number of elements forming matrices and because generalized matrices are synthesized based on primitive generating polynomials and polynomials that are not necessarily primitive. Classical LFSR generators of PRN (and their matrix equivalents) have a significant drawback: they are susceptible to Berlekamp-Messi (BM) attacks. Generalized matrix PRNG is free from BM attack. The last property is a consequence of such a feature of the BM algorithm. This algorithm for cracking classical LFSR generators of PRN solves the problem of calculating the only unknown – a primitive polynomial generating the generator. For variants of generalized matrix PRNG, it becomes necessary to determine two unknown parameters: both an irreducible polynomial and a forming element that produces a generalized matrix. This problem turns out to be unsolvable for the BM algorithm since it is designed to calculate only one unknown parameter. The research results are generalized for solving PRNG problems over a Galois field of odd characteristics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tim O. Nieuwenhuis ◽  
Avi Z. Rosenberg ◽  
Matthew N. McCall ◽  
Marc K. Halushka

AbstractThe extracellular matrix (ECM) has historically been explored through proteomic methods. Whether or not global transcriptomics can yield meaningful information on the human matrisome is unknown. Gene expression data from 17,382 samples across 52 tissues, were obtained from the Genotype-Tissue Expression (GTEx) project. Additional datasets were obtained from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus for comparisons. Gene expression levels generally matched proteome-derived matrisome expression patterns. Further, matrisome gene expression properly clustered tissue types, with some matrisome genes including SERPIN family members having tissue-restricted expression patterns. Deeper analyses revealed 382 gene transcripts varied by age and 315 varied by sex in at least one tissue, with expression correlating with digitally imaged histologic tissue features. A comparison of TCGA tumor, TCGA adjacent normal and GTEx normal tissues demonstrated robustness of the GTEx samples as a generalized matrix control, while also determining a common primary tumor matrisome. Additionally, GTEx tissues served as a useful non-diseased control in a separate study of idiopathic pulmonary fibrosis (IPF) matrix changes, while identifying 22 matrix genes upregulated in IPF. Altogether, these findings indicate that the transcriptome, in general, and GTEx in particular, has value in understanding the state of organ ECM.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012002
Author(s):  
Mashrabjon Mamatov ◽  
Xakimjon Alimov

Abstract This work is devoted to the study of the pursuit problem in controlled systems described by a fractional-order equation with divided dynamics. For fixed player controls, representations of solutions are established in the form of analogs of the Cauchy formula using generalized matrix functions. Sufficient conditions are obtained for the possibility of completing the pursuit. Specific types of fractional differential equations and models of fractional dynamical systems are considered. The qualitative dynamics, issues of stability and controllability of such systems are discussed. Considered, try which, the motion of the equation is described with irrational orders. Problems of the type under study are encountered in modeling the processes of economic growth and in problems of stabilizing dynamic systems.


2021 ◽  
pp. 2150021
Author(s):  
Ajay Kumar Bhurjee ◽  
Vinay Yadav

Game theory-based models are widely used to solve multiple competitive problems such as oligopolistic competitions, marketing of new products, promotion of existing products competitions, and election presage. The payoffs of these competitive models have been conventionally considered as deterministic. However, these payoffs have ambiguity due to the uncertainty in the data sets. Interval analysis-based approaches are found to be efficient to tackle such uncertainty in data sets. In these approaches, the payoffs of the game model lie in some closed interval, which are estimated by previous information. The present paper considers a multiple player game model in which payoffs are uncertain and varies in a closed intervals. The necessary and sufficient conditions are explained to discuss the existence of Nash equilibrium point of such game models. Moreover, Nash equilibrium point of the model is obtained by solving a crisp bi-linear optimization problem. The developed methodology is further applied for obtaining the possible optimal strategy to win the parliament election presage problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiuhai Fei ◽  
Haifang Zhang

The aim of the paper is to give a description of nonlinear Jordan derivable mappings of a certain class of generalized matrix algebras by Lie product square-zero elements. We prove that under certain conditions, a nonlinear Jordan derivable mapping Δ of a generalized matrix algebra by Lie product square-zero elements is a sum of an additive derivation δ and an additive antiderivation f . Moreover, δ and f are uniquely determined.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1075
Author(s):  
Huaiqian Bao ◽  
Zhaoting Shi ◽  
Jinrui Wang ◽  
Zongzhen Zhang ◽  
Guowei Zhang

Fault diagnosis of mechanical equipment is mainly based on the contact measurement and analysis of vibration signals. In some special working conditions, the non-contact fault diagnosis method represented by the measurement of acoustic signals can make up for the lack of contact testing. However, its engineering application value is greatly restricted due to the low signal-to-noise ratio (SNR) of the acoustic signal. To solve this deficiency, a novel fault diagnosis method based on the generalized matrix norm sparse filtering (GMNSF) is proposed in this paper. Specially, the generalized matrix norm is introduced into the sparse filtering to seek the optimal sparse feature distribution to overcome the defect of low SNR of acoustic signals. Firstly, the collected acoustic signals are randomly overlapped to form the sample fragment data set. Then, three constraints are imposed on the multi-period data set by the GMNSF model to extract the sparse features in the sample. Finally, softmax is used to as a classifier to categorize different fault types. The diagnostic performance of the proposed method is verified by the bearing and planetary gear datasets. Results show that the GMNSF model has good feature extraction ability performance and anti-noise ability than other traditional methods.


Sign in / Sign up

Export Citation Format

Share Document