scholarly journals Unlocking the PIP-box: A peptide library reveals interactions that drive high affinity binding to human PCNA

2021 ◽  
pp. 100773
Author(s):  
Aimee J. Horsfall ◽  
Beth A. Vandborg ◽  
Wioleta Kowalczyk ◽  
Theresa Chav ◽  
Denis B. Scanlon ◽  
...  
2011 ◽  
Vol 19 (7) ◽  
pp. 2470-2477 ◽  
Author(s):  
Ulrike Jüse ◽  
Magnus Arntzen ◽  
Peter Højrup ◽  
Burkhard Fleckenstein ◽  
Ludvig M. Sollid

2014 ◽  
Vol 81 (3) ◽  
pp. 1092-1100 ◽  
Author(s):  
Mihoko Kato ◽  
Miho Watanabe-Takahashi ◽  
Eiko Shimizu ◽  
Kiyotaka Nishikawa

ABSTRACTShiga toxin (Stx), a major virulence factor of enterohemorrhagicEscherichia coli, binds to target cells through a multivalent interaction between its B-subunit pentamer and the cell surface receptor globotriaosylceramide, resulting in a remarkable increase in its binding affinity. This phenomenon is referred to as the “clustering effect.” Previously, we developed a multivalent peptide library that can exert the clustering effect and identified Stx neutralizers with tetravalent peptides by screening this library for high-affinity binding to the specific receptor-binding site of the B subunit. However, this technique yielded only a limited number of binding motifs, with some redundancy in amino acid selectivity. In this study, we established a novel technique to synthesize up to 384 divalent peptides whose structures were customized to exert the clustering effect on the B subunit on a single cellulose membrane. By targeting Stx1a, a major Stx subtype, the customized divalent peptides were screened to identify high-affinity binding motifs. The sequences of the peptides were designed based on information obtained from the multivalent peptide library technique. A total of 64 candidate motifs were successfully identified, and 11 of these were selected to synthesize tetravalent forms of the peptides. All of the synthesized tetravalent peptides bound to the B subunit with high affinities and effectively inhibited the cytotoxicity of Stx1a in Vero cells. Thus, the combination of the two techniques results in greatly improved efficiency in identifying biologically active neutralizers of Stx.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


1994 ◽  
Vol 72 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Neelesh Bangalore ◽  
William N Drohan ◽  
Carolyn L Orthner

SummaryActivated protein C (APC) is an antithrombotic serine proteinase having anticoagulant, profibrinolytic and anti-inflammatory activities. Despite its potential clinical utility, relatively little is known about its clearance mechanisms. In the present study we have characterized the interaction of APC and its active site blocked forms with human umbilical vein endothelial cells (HUVEC). At 4° C 125I-APC bound to HUVEC in a specific, time dependent, saturable and reversible manner. Scatchard analysis of the binding isotherm demonstrated a Kd value of 6.8 nM and total number of binding sites per cell of 359,000. Similar binding isotherms were obtained using radiolabeled protein C (PC) zymogen as well as D-phe-pro-arg-chloromethylketone (PPACK) inhibited APC indicating that a functional active site was not required. Competition studies showed that the binding of APC, PPACK-APC and PC were mutually exclusive suggesting that they bound to the same site(s). Proteolytic removal of the N-terminal γ-carboxyglutamic acid (gla) domain of PC abolished its ability to compete indicating that the gla-domain was essential for cell binding. Surprisingly, APC binding to these cells appeared to be independent of protein S, a cofactor of APC generally thought to be required for its high affinity binding to cell surfaces. The identity of the cell binding site(s), for the most part, appeared to be distinct from other known APC ligands which are associated with cell membranes or extracellular matrix including phospholipid, thrombomodulin, factor V, plasminogen activator inhibitor type 1 (PAI-1) and heparin. Pretreatment of HUVEC with antifactor VIII antibody caused partial inhibition of 125I-APC binding indicating that factor VIII or a homolog accounted for ∼30% of APC binding. Studies of the properties of surface bound 125I-APC or 125I-PC and their fate at 4°C compared to 37 °C were consistent with association of ∼25% of the initially bound radioligand with an endocytic receptor. However, most of the radioligand appeared not to be bound to an endocytic receptor and dissociated rapidly at 37° C in an intact and functional state. These data indicate the presence of specific, high affinity binding sites for APC and PC on the surface of HUVEC. While a minor proportion of binding sites may be involved in endocytosis, the identity and function of the major proportion is presently unknown. It is speculated that this putative receptor may be a further mechanisms of localizing the PC antithrombotic system to the vascular endothelium.


1989 ◽  
Vol 264 (19) ◽  
pp. 11004-11008 ◽  
Author(s):  
M L Bayne ◽  
J Applebaum ◽  
D Underwood ◽  
G G Chicchi ◽  
B G Green ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document