b subunit
Recently Published Documents


TOTAL DOCUMENTS

1498
(FIVE YEARS 112)

H-INDEX

85
(FIVE YEARS 4)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 139
Author(s):  
Mei Fu ◽  
Xiaona Lin ◽  
Yining Zhou ◽  
Chunmei Zhang ◽  
Bing Liu ◽  
...  

RNA editing is essential for compensating for defects or mutations in haploid organelle genomes and is regulated by numerous trans-factors. Pentatricopeptide repeat (PPR) proteins are the prime factors that are involved in RNA editing; however, many have not yet been identified. Here, we screened the plastid-targeted PLS-DYW subfamily of PPR proteins belonging to Arabidopsis thaliana and identified ORGANELLE TRANSCRIPT PROCESSING 970 (OTP970) as a key player in RNA editing in plastids. A loss-of-function otp970 mutant was impaired in RNA editing of ndhB transcripts at site 149 (ndhB-C149). RNA-immunoprecipitation analysis indicated that OTP970 was associated with the ndhB-C149 site. The complementation of the otp970 mutant with OTP970 lacking the DYW domain (OTP970∆DYW) failed to restore the RNA editing of ndhB-C149. ndhB gene encodes the B subunit of the NADH dehydrogenase-like (NDH) complex; however, neither NDH activity and stability nor NDH-PSI supercomplex formation were affected in otp970 mutant compared to the wild type, indicating that alteration in amino acid sequence is not necessary for NdhB function. Together, these results suggest that OTP970 is involved in the RNA editing of ndhB-C149 and that the DYW domain is essential for its function.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 91
Author(s):  
Lucija Kuna ◽  
Milorad Zjalic ◽  
Tomislav Kizivat ◽  
Hrvoje Roguljic ◽  
Vjera Nincevic ◽  
...  

Background and Objectives: Peptic ulcer disease is a chronic disease affecting up to 10% of the world’s population. Proton pump inhibitors, such as lansoprazole are the gold standard in the treatment of ulcer disease. However, various studies have shown the effectiveness of garlic oil extracts in the treatment of ulcer disease. A cellular model can be established in the human gastric cell line by sodium taurocholate. The aim of this study was to explore the effects of garlic oil extracts pretreatment and LPZ addition in the cell culture model of peptic ulcer disease by examining oxidative stress and F-actin distribution. Materials and Methods: Evaluation was performed by determination of glutathione and prostaglandin E2 concentrations by ELISA; human gastric cell line proliferation by cell counting; expression of ATP-binding cassette, sub-family G, member 2; nuclear factor kappa B subunit 2 by RT PCR; and F-actin cytoskeleton visualization by semi-quantification of Rhodamine Phalloidin stain. Results: Our results showed significant reduction of cell damage after sodium taurocholate incubation when the gastric cells were pretreated with lansoprazole (p < 0.001) and increasing concentrations of garlic oil extracts (p < 0.001). Pretreatment with lansoprazole and different concentrations of garlic oil extracts increased prostaglandin E2 and glutathione concentrations in the cell culture model of peptic ulcer disease (p < 0.001). Positive correlation of nuclear factor kappa B subunit 2 (p < 0.01) with lansoprazole and garlic oil extracts pretreatment was seen, while ATP-binding cassette, sub-family G, member 2 expression was not changed. Treatment with sodium taurocholate as oxidative stress on F actin structure was less pronounced, although the highest concentration of garlic oil extracts led to a statistically significant increase of total amount of F-actin (p < 0.001). Conclusions: Hence, pretreatment with garlic oil extracts had gastroprotective effect in the cell model of peptic ulcer disease. However, further experiments are needed to fully elucidate the mechanism of this protective role.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3505
Author(s):  
Hirofumi Ohga ◽  
Kosuke Ito ◽  
Kohei Kakino ◽  
Hiroaki Mon ◽  
Takahiro Kusakabe ◽  
...  

Leptin, secreted by adipocytes, directly influences the onset of puberty in mammals. Our previous study showed that leptin stimulation could promote the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from pituitary cells in primary culture and ovarian development in chub mackerel. This study aimed to elucidate the detailed mechanism of leptin-induced effects on gonadotropin hormone-producing cells. We produced recombinant leptin using silkworm pupae and investigated the effects of leptin on FSH and LH secretion and gene expression in the primary culture of pituitary cells from chub mackerel. The presence or absence of co-expression of lepr mRNA, FSH and LH b-subunit mRNA in gonadotropic cells was examined by double-labeled in situ hybridization. The addition of leptin significantly increased the secretion and gene expression of FSH and LH from male and female pituitary cells in primary culture. In contrast, gonadotropin-releasing hormone 1 affected neither FSH secretion in cells from females nor fshb and lhb expression in cells from males and females. The expression of lepr was observed in FSH- and LH-producing cells of both males and females. The results indicate that leptin directly regulates gonadotropin synthesis and secretion and plays an important role in the induction of puberty in teleost fish.


Neuroglia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 68-88
Author(s):  
Jagdeep K. Sandhu ◽  
Maria Ribecco-Lutkiewicz ◽  
Abedelnasser Abulrob

Caveolae are plasma membrane invaginations that are enriched in cholesterol-binding proteins called caveolins. The presence of caveolae and caveolins in mixed cultures of human neurons and glia has not been investigated. Here, we sought to determine the presence of caveolae and caveolins in human NTera-2 (NT2/D1) cells, differentiated with retinoic acid into neuron-like (NT2/N) and astrocyte-like (NT2/A) cells. We found that while caveolin-3 mRNA levels remained relatively constant, caveolin-1 and -2 levels were upregulated in NT2/A and downregulated in NT2/N. No caveolin-1 immunoreactivity was detected in NT2/N. Electron microscopy revealed numerous flask-shaped invaginations (~86–102 nm in diameter) in the plasma membrane of NT2/A and NT2/N cells, while only few were detected in NT2/D1 cells. Immunoelectron microscopy localized caveolin-1 gold particles in the flask-shaped structures on plasmalemma and cytoplasmic vesicles of NT2/A cells. Furthermore, NT2/A endocytosed Alexa 488 conjugated-cholera toxin B subunit (CTX-B) through a caveolae- and clathrin-dependent pathway, whereas NT2/N endocytosed CTX-B through a caveolae-independent pathway. We have established that while NT2/A expressed functional caveolae, the molecular identity of the plasma membrane invaginations in NT2/N is unknown. The expression of caveolin proteins was differentially regulated in these cells. Taken together, our findings support the usefulness of the human NT2 model system to study the role of caveolins in neuron–glia communication, and their involvement in brain health and disease.


2021 ◽  
Author(s):  
Roberto Marotta ◽  
Alessandra Del Giudice ◽  
Gurrieri Libero ◽  
Silvia Fanti ◽  
Paolo Swec ◽  
...  

Oxygenic phototrophs perform carbon fixation through the Calvin–Benson cycle. Different mechanisms adjust the cycle and the light–harvesting reactions to rapid environmental changes. Photosynthetic glyceraldehyde–3–phosphate dehydrogenase (GAPDH) is a key enzyme of the cycle. In land plants, different photosynthetic GAPDHs exist: the most abundant formed by hetero-tetramers of A and B–subunits, and the homotetramer A4. Regardless of the subunit composition, GAPDH is the major consumer of photosynthetic NADPH and for this reason is strictly regulated. While A4–GAPDH is regulated by CP12, AB–GAPDH is autonomously regulated through the C-terminal extension (CTE) of B–subunits. Reversible inactivation of AB–GAPDH occurs via oxidation of a cysteine pair located in the CTE, and substitution of NADP(H) with NAD(H) in the cofactor binding domain. These combined conditions lead to a change in the oligomerization state and enzyme inactivation. SEC–SAXS and single–particle cryoEM analysis disclosed the structural basis of this regulatory mechanism. Both approaches revealed that (A2B2)n–GAPDH oligomers with n=1, 2, 4 and 5 co–exist in a dynamic system. B–subunits mediate the contacts between adjacent A2B2 tetramers in A4B4 and A8B8 oligomers. The CTE of each B–subunit penetrates into the active site of a B–subunit of the adjacent tetramer, while the CTE of this subunit moves in the opposite direction, effectively preventing the binding of the substrate 1,3–bisphosphoglycerate in the B–subunits. The whole mechanism is made possible, and eventually controlled, by pyridine nucleotides. In fact, NAD(H) by removing NADP(H) from A–subunits allows the entrance of the CTE in B–subunits active sites and hence inactive oligomer stabilization.


2021 ◽  
Vol 22 (20) ◽  
pp. 11230
Author(s):  
Yan Wang ◽  
Ronald M. P. Breedijk ◽  
Mark A. Hink ◽  
Lars Bults ◽  
Norbert O. E. Vischer ◽  
...  

Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores’ extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor’s (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)–SGFP2 and GerD–mScarlet-I, but there was no FRET between GerD–mScarlet-I and either GerRA–SGFP2 or GerRC–SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)–SGFP2 and GerD–mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)–SGFP2 and GerD–mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Leqiang Sun ◽  
Yajie Tang ◽  
Keji Yan ◽  
Huanchun Chen ◽  
Huawei Zhang

AbstractPorcine epidemic diarrhea (PED) caused by the porcine epidemic diarrhea virus (PEDV), is a severe infectious and devastating swine disease that leads to serious economic losses in the swine industry worldwide. An increased number of PED cases caused by variant PEDV have been reported in many countries since 2010. S protein is the main immunogenic protein containing some B-cell epitopes that can induce neutralizing antibodies of PEDV. In this study, the construction, expression and purification of Pseudomonas aeruginosa exotoxin A (PE) without domain III (PEΔIII) as a vector was performed for the delivery of PEDV S-A or S-B. PE(ΔIII) PEDV S-A and PE(ΔIII) PEDV S-B recombinant proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. The immunogenicity of PEDV S-A and PEDV S-B subunit vaccines were evaluated in mice. The results showed that PEDV-S-B vaccine could not only induce specific humoral and Th1 type-dominant cellular immune responses, but also stimulate PEDV-specific mucosal immune responses in mice. PEDV-S-B subunit vaccine is a novel candidate mucosal vaccine against PEDV infection.


2021 ◽  
Author(s):  
Yu Wu ◽  
Nassim Mahtal ◽  
Lea Swistak ◽  
Sara Sagadiev ◽  
Mridu Acharya ◽  
...  

A challenge for the development of host-targeted anti-infectives against a large spectrum of AB-like toxin-producing bacteria encompasses the identification of chemical compounds corrupting toxin transport through both endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of small chemical compounds blocking active Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, followed by orthogonal screens against two AB toxins hijacking defined endolysosomal (Diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule N-(3,3-diphenylpropyl)-1-propyl-4-piperidinamine, referred to as C910. This compound induces the swelling of EEA1-positive early endosomes, in absence of PIKfyve kinase inhibition, and disturbs the trafficking of CNF1 and the B-subunit of Shiga toxin along the endolysosomal or retrograde pathways, respectively. Together, we show that C910 protects cells against 8 bacterial AB toxins including large clostridial glucosylating toxins from Clostridium difficile. Of interest, C910 also reduced viral infection in vitro including influenza A virus subtype H1N1 and SARS-CoV-2. Moreover, parenteral administration of C910 to the mice resulted in its accumulation in lung tissues and reduced lethal influenza infection.


Sign in / Sign up

Export Citation Format

Share Document