scholarly journals Receptor binding, immune escape, and protein stability direct the natural selection of SARS-CoV-2 variants

2021 ◽  
Vol 297 (4) ◽  
pp. 101208
Author(s):  
Vaibhav Upadhyay ◽  
Alexandra Lucas ◽  
Sudipta Panja ◽  
Ryuki Miyauchi ◽  
Krishna M.G. Mallela
2020 ◽  
Author(s):  
James A. Hay ◽  
Alvin Junus ◽  
Steven Riley ◽  
Hsiang-Yu Yuan

AbstractMutations that alter cellular receptor binding of influenza hemagglutinin (HA) have profound effects on immune escape. Despite its high mutation rate, it is not fully understood why human influenza HA displays limited antigenic diversity across circulating viruses. We applied phylogenetic analysis and phylodynamic modeling to understand the evolutionary and epidemiological effects of binding avidity adaptation in humans using net charge as a marker for receptor binding avidity. Using 686 human influenza A/H3N2 HA sequences, we found that HA net charge followed an age-specific pattern. Phylogenetic analysis suggested that many binding variants have reduced fitness. Next, we developed an individual-based disease dynamic model embedded with within-host receptor binding adaptation and immune escape in a population with varied partial immunity. The model showed that mean binding avidity was unable to adapt to values that maximized transmissibility due to competing selective forces between within- and between-host levels. Overall, we demonstrated stabilizing selection of virus binding in a population with increasing partial immunity. These findings have potential implications in understanding the evolutionary mechanisms that determine the intensity of seasonal influenza epidemics.


2021 ◽  
Author(s):  
Vaibhav Upadhyay ◽  
Alexandra Lucas ◽  
Sudipta Panja ◽  
Krishna Mallela

Emergence of new SARS-CoV-2 variants has raised concerns at the effectiveness of vaccines and antibody therapeutics developed against the unmutated wild-type virus. It is thus important to understand the emergence of mutants from an evolutionary viewpoint to be able to devise effective countermeasures against new variants. We examined the effect of 12 most commonly occurring mutations in the receptor binding domain (RBD) on its expression, stability, activity, and antibody escape potential- some of the factors that may influence the natural selection of mutants. Recombinant proteins were expressed in human cells. Stability was measured using thermal denaturation melts. Activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding of RBD variants to ACE2 and to a neutralizing human antibody CC12.1, respectively. Our results show that variants differ in their expression levels, suggesting that mutations can impact the availability of proteins for virus assembly. All variants have similar or higher stability than the wild-type, implying that increased RBD stability might be another important factor in virus evolution. In terms of ACE2 binding, when compared to the wild-type, only 3 out of 7 expressed variants show stronger affinity, 2 have similar affinity, whereas the other 2 have weaker affinity, indicating that increased affinity towards ACE2 is an important but not the sole factor in the natural selection of variants. In terms of CC12.1 binding, when compared to the wild-type, 4 out of 7 variants have weaker affinity, 2 have a similar affinity, and 1 variant has a stronger affinity. Taken together, these results indicate that multiple factors contribute towards the natural selection of variants, and all of these factors have to be considered in order to understand the natural selection of SARS-CoV-2 variants. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that particular variant.


1998 ◽  
Vol 43 (4) ◽  
pp. 263-264
Author(s):  
Joseph F. Rychlak

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Li-Yun Lin ◽  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Dong-De Xie ◽  
Jiang-Tao Chen ◽  
...  

Abstract Background Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. Methods 153 blood spot samples from Bioko malaria patients were collected during 2016–2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. Results A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN–dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. Conclusions Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


2009 ◽  
Vol 18 (14) ◽  
pp. 3110-3119 ◽  
Author(s):  
T. TAKAHASHI ◽  
K. WATANABE ◽  
H. MUNEHARA ◽  
L. RÜBER ◽  
M. HORI

Sign in / Sign up

Export Citation Format

Share Document