human influenza
Recently Published Documents


TOTAL DOCUMENTS

966
(FIVE YEARS 117)

H-INDEX

87
(FIVE YEARS 7)

2022 ◽  
Author(s):  
J. Brian Kimble ◽  
Meghan Wymore Brand ◽  
Bryan S. Kaplan ◽  
Phillip Gauger ◽  
Elizabeth M. Coyle ◽  
...  

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and strains contained in vaccines may cause loss in efficacy. Whole inactivated virus (WIV) vaccines with adjuvant utilized by the swine industry are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil in water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) five weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD affected pigs exhibited a 2-fold increase in lung lesions, while VAERD affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. Importance We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed towards a conserved epitope on the HA stalk induced by an oil-in-water adjuvanted whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines to humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Author(s):  
David R. McIlwain ◽  
Han Chen ◽  
Zainab Rahil ◽  
Neda Hajiakhoond Bidoki ◽  
Sizun Jiang ◽  
...  

2021 ◽  
Vol 17 (10) ◽  
pp. e1009962
Author(s):  
Kaitlyn Waters ◽  
Cheng Gao ◽  
Matthew Ykema ◽  
Lei Han ◽  
Lynden Voth ◽  
...  

Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bin Fu ◽  
Zhengjie Wu ◽  
Lingtong Huang ◽  
Zhaohui Chai ◽  
Peidong Zheng ◽  
...  

Abstract Background Through the comparison of the demographic, epidemiological, and clinical characteristics of hospital human influenza (influenza A (H1N1) pdm09, H3N2, and B)-related and hospitalized avian-origin influenza A (H7N9)-related viral pneumonia patients, find the different between them. Methods A retrospective study was conducted in hospitalized influenza-related viral pneumonia patients. Results Human influenza A-related patients in the 35–49-year-old group were more than those with B pneumonia patients (p = 0.027), and relatively less in the ≥ 65-year-old group than B pneumonia patients (p = 0.079). The proportion of comorbid condition to human influenza A pneumonia was 58%, lower than B pneumonia and H7N9 pneumonia patients (78% vs. 77.8%; p = 0.013). The proportion of invasive mechanical ventilation (IMV), lymphocytopenia, elevated lactate dehydrogenase to hospitalized human influenza A-related viral pneumonia patients was higher than B pneumonia patients (p < 0.05), but lower than H7N9 pneumonia patients (p < 0.05). In the multivariate analysis, pulmonary consolidation (odds ratio (OR): 13.67; 95% confidence interval (CI) 1.54–121.12; p = 0.019) and positive bacterial culture (sputum) (OR: 7.71; 95% CI 2.48–24.03; p < 0.001) were independently associated with IMV, while shock (OR: 13.16; 95% CI 2.06–84.07; p = 0.006), white blood cell count > 10,000/mm3 (OR: 7.22; 95% CI 1.47–35.58; p = 0.015) and positive bacterial culture(blood or sputum) (OR: 6.27; 95% CI 1.36–28.85; p = 0.018) were independently associated with death in the three types hospitalized influenza-related viral pneumonia patients. Conclusions Hospital influenza B-related viral pneumonia mainly affects the elderly and people with underlying diseases, while human influenza A pneumonia mainly affects the young adults; however, the mortality was similar. The hospitalized human influenza A-related viral pneumonia patients was severer than B pneumonia patients, but milder than H7N9 pneumonia patients. Pulmonary consolidation and positive bacterial culture (sputum) were independently associated with IMV, while shock, white blood cell count > 10,000/mm3, and positive bacterial culture (blood or sputum) were independently associated with death to three types hospitalized influenza-related viral pneumonia patients.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1919
Author(s):  
C. Joaquín Cáceres ◽  
Daniela S. Rajao ◽  
Daniel R. Perez

Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.


2021 ◽  
Author(s):  
Eleni Vatzia ◽  
Elizabeth Allen ◽  
Tanuja Manjegowda ◽  
Susan Morris ◽  
Adam McNee ◽  
...  

Abstract There is a critical need to develop superior influenza vaccines that provide broader protection. Influenza vaccines are traditionally tested in naïve animals, although humans are exposed to influenza in the first years of their lives, but the impact of prior influenza exposure on vaccine induced immune responses has not been well studied. Pigs are an important natural host for influenza, are a source of pandemic viruses, and are an excellent model for human influenza. Here we investigated the immunogenicity of the ChAdOx2 viral vectored vaccine, expressing influenza nucleoprotein, matrix protein 1 and neuraminidase in H1N1pdm09 pre-exposed pigs. We evaluated the importance of route of administration by comparing intra-nasal, aerosol and intra-muscular immunizations. Aerosol delivery boosted the local lung T cell and antibody responses, while intra-muscular immunization boosted systemic immunity. These results will inform how best to deliver vaccines in order to harness optimal protective immunity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alvin X Han ◽  
Zandra C Felix Garza ◽  
Matthijs RA Welkers ◽  
René M Vigeveno ◽  
Nhu Duong Tran ◽  
...  

The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analysed the within-host evolution of 82 longitudinally-sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titres decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.


2021 ◽  
Vol 9 (8) ◽  
pp. 1639
Author(s):  
Andrew T. Bisset ◽  
Gerard F. Hoyne

In 2020, several geographically isolated farms in Victoria, Australia, experienced an outbreak of highly pathogenic avian influenza (HPAI) virus H7N7 and low pathogenic avian influenza (LPAI) viruses H5N2 and H7N6. Effective containment and control measures ensured the eradication of these viruses but the event culminated in substantial loss of livestock and significant economic impact. The avian HPAI H7N7 virus generally does not infect humans; however, evidence shows the ocular pathway presents a favourable tissue tropism for human infection. Through antigenic drift, mutations in the H7N7 viral genome may increase virulence and pathogenicity in humans. The Victorian outbreak also detected LPAI H7N6 in emus at a commercial farm. Novel influenza A viruses can emerge by mixing different viral strains in a host susceptible to avian and human influenza strains. Studies show that emus are susceptible to infections from a wide range of influenza viral subtypes, including H5N1 and the pandemic H1N1. The emu’s internal organs and tissues express abundant cell surface sialic acid receptors that favour the attachment of avian and human influenza viruses, increasing the potential for internal genetic reassortment and the emergence of novel influenza A viruses. This review summarises the historical context of H7N7 in Australia, considers the potential for increased virulence and pathogenesis through mutations and draws attention to the emu as potentially an unrecognised viral mixing vessel.


Sign in / Sign up

Export Citation Format

Share Document