binding avidity
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 23 (2) ◽  
pp. 676
Author(s):  
Shin Irumagawa ◽  
Keiko Hiemori ◽  
Sayoko Saito ◽  
Hiroaki Tateno ◽  
Ryoichi Arai

Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.


2022 ◽  
Author(s):  
Charles F Lang ◽  
Edwin Munro

Asymmetric distributions of peripheral membrane proteins define cell polarity across all kingdoms of life. These asymmetries are shaped by membrane binding, diffusion and transport. Theoretical studies have revealed a general requirement for non-linear positive feedback to spontaneously amplify and/or stabilize asymmetries against dispersion by diffusion and dissociation. But how specific molecular sources of non-linearity shape polarization dynamics remains poorly understood. Here we study how oligomerization of peripheral membrane proteins shapes polarization dynamics in simple feedback circuits. We show that size dependent binding avidity and mobility of membrane bound oligomers endow polarity circuits generically with several key properties. Size-dependent binding avidity confers a form of positive feedback in which the effective rate constant for subunit dissociation decreases with increasing subunit density. This combined with additional weak linear positive feedback is sufficient for spontaneous emergence of stably polarized states. Size-dependent oligomer mobility makes symmetry-breaking and stable polarity more robust with respect to variation in subunit diffusivities and cell sizes, and slows the approach to a final stable spatial distribution, allowing cells to "remember" polarity boundaries imposed by transient external cues. Together, these findings reveal how oligomerization of peripheral membrane proteins can provide powerful and highly tunable sources of non-linear feedback in biochemical circuits that govern cell-surface polarity. Given its prevalence and widespread involvement in cell polarity, we speculate that self-oligomerization may have provided an accessible path to evolving simple polarity circuits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ola Kamala ◽  
Talat H. Malik ◽  
Thomas M. Hallam ◽  
Thomas E. Cox ◽  
Yi Yang ◽  
...  

C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1–5^18–20^R1–2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohamed Hendy ◽  
Samuel Kaufman ◽  
Mauricio Ponga

AbstractThe COVID19 pandemic, caused by SARS-CoV-2, has infected more than 200 million people worldwide. Due to the rapid spreading of SARS-CoV-2 and its impact, it is paramount to find effective treatments against it. Human neutralizing antibodies are an effective method to fight viral infection. However, the recent discovery of new strains that substantially change the S-protein sequence has raised concern about vaccines and antibodies’ effectiveness. Here, using molecular simulations, we investigated the binding mechanisms between the S-protein and several antibodies. Multiple mutations were included to understand the strategies for antibody escape in new variants. We found that the combination of mutations K417N, E484K, L452R, and T478K produced higher binding energy to ACE2 than the wild type, suggesting higher efficiency to enter host cells. The mutations’ effect depends on the antibody class. While Class I enhances the binding avidity in the presence of N501Y mutation, class II antibodies showed a sharp decline in the binding affinity. Our simulations suggest that Class I antibodies will remain effective against the new strains. In contrast, Class II antibodies will have less affinity to the S-protein, potentially affecting these antibodies’ efficiency.


Author(s):  
On-anong Juntit ◽  
Umpa Yasamut ◽  
Supachai Sakkhachornphop ◽  
Koollawat Chupradit ◽  
Weeraya Thongkum ◽  
...  

Assembly and budding in the late-stage of human immunodeficiency virus type 1 (HIV-1) production relies on the polymerization of Gag protein at the inner leaflet of the plasma membrane. We previously generated an ankyrin repeat protein (Ank1D4) that specifically interacts with the CAp24 protein. This study aimed to improve the binding activity of Ank1D4 by generating two platforms for the Ank1D4 dimer. The design of these constructs featured a distinct orientation of monomeric Ank1D4 connected by a linker peptide (G S) . The binding surfaces in either dimer generated from the C-terminus of the Ank1D4 monomer linked with the N-terminus of another monomer (Ank1D4 ) or its inverted form (Ank1D4 ), similar to monomeric Ank1D4. The interaction of Ank1D4 with CAp24 from capture ELISA was significantly greater than that of Ank1D4 and the parental Ank1D4. The bifunctional characteristic of Ank1D4 was further demonstrated using sandwich ELISA. The binding kinetics of these ankyrins were evaluated using bio-layer interferometry analysis. The K of Ank1D4 , Ank1D4 and monomeric Ank1D4 was 3.5 nM, 53.7 nM, and 126.2 nM, respectively. The dynamics of the interdomain linker and the behavior of ankyrin dimers were investigated in silico. Upon the binding distance calculation from the candidate structures, the achievement in obtaining double active sites is more possible in Ank1D4 . The CD spectroscopic data indicated that secondary structure of dimer forms resemble Ank1D4 monomer α-helical content. This finding confers the strategy to generate dimer from rigid scaffold for acquiring the binding avidity.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009566
Author(s):  
Johanna West ◽  
Juliane Röder ◽  
Tatyana Matrosovich ◽  
Jana Beicht ◽  
Jan Baumann ◽  
...  

The hemagglutinin (HA) of A/H3N2 pandemic influenza viruses (IAVs) of 1968 differed from its inferred avian precursor by eight amino acid substitutions. To determine their phenotypic effects, we studied recombinant variants of A/Hong Kong/1/1968 virus containing either human-type or avian-type amino acids in the corresponding positions of HA. The precursor HA displayed receptor binding profile and high conformational stability typical for duck IAVs. Substitutions Q226L and G228S, in addition to their known effects on receptor specificity and replication, marginally decreased HA stability. Substitutions R62I, D63N, D81N and N193S reduced HA binding avidity. Substitutions R62I, D81N and A144G promoted viral replication in human airway epithelial cultures. Analysis of HA sequences revealed that substitutions D63N and D81N accompanied by the addition of N-glycans represent common markers of avian H3 HA adaptation to mammals. Our results advance understanding of genotypic and phenotypic changes in IAV HA required for avian-to-human adaptation and pandemic emergence.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mona O. Mohsen ◽  
Dominik Rothen ◽  
Ina Balke ◽  
Byron Martina ◽  
Vilija Zeltina ◽  
...  

AbstractMERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV). In order to produce a vaccine that is readily scalable, we genetically fused the receptor-binding motif (RBM) of MERS-CoV spike protein into the surface of cucumber-mosaic virus VLPs. The employed CuMVTT-VLPs represent a new immunologically optimized vaccine platform incorporating a universal T cell epitope derived from tetanus toxin (TT). The resultant vaccine candidate (mCuMVTT-MERS) is a mosaic particle and consists of unmodified wild type monomers and genetically modified monomers displaying RBM, co-assembling within E. coli upon expression. mCuMVTT-MERS vaccine is self-adjuvanted with ssRNA, a TLR7/8 ligand which is spontaneously packaged during the bacterial expression process. The developed vaccine candidate induced high anti-RBD and anti-spike antibodies in a murine model, showing high binding avidity and an ability to completely neutralize MERS-CoV/EMC/2012 isolate, demonstrating the protective potential of the vaccine candidate for dromedaries and humans.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009715
Author(s):  
Nidhi Shukla ◽  
Sarah M. Roelle ◽  
Vinicius G. Suzart ◽  
Anna M. Bruchez ◽  
Kenneth A. Matreyek

SARS-CoV and SARS-CoV-2 encode spike proteins that bind human ACE2 on the cell surface to enter target cells during infection. A small fraction of humans encode variants of ACE2, thus altering the biochemical properties at the protein interaction interface. These and other ACE2 coding mutants can reveal how the spike proteins of each virus may differentially engage the ACE2 protein surface during infection. We created an engineered HEK 293T cell line for facile stable transgenic modification, and expressed the major human ACE2 allele or 28 of its missense mutants, 24 of which are possible through single nucleotide changes from the human reference sequence. Infection with SARS-CoV or SARS-CoV-2 spike pseudotyped lentiviruses revealed that high ACE2 cell-surface expression could mask the effects of impaired binding during infection. Drastically reducing ACE2 cell surface expression revealed a range of infection efficiencies across the panel of mutants. Our infection results revealed a non-linear relationship between soluble SARS-CoV-2 RBD binding to ACE2 and pseudovirus infection, supporting a major role for binding avidity during entry. While ACE2 mutants D355N, R357A, and R357T abrogated entry by both SARS-CoV and SARS-CoV-2 spike proteins, the Y41A mutant inhibited SARS-CoV entry much more than SARS-CoV-2, suggesting differential utilization of the ACE2 side-chains within the largely overlapping interaction surfaces utilized by the two CoV spike proteins. These effects correlated well with cytopathic effects observed during SARS-CoV-2 replication in ACE2-mutant cells. The panel of ACE2 mutants also revealed altered ACE2 surface dependencies by the N501Y spike variant, including a near-complete utilization of the K353D ACE2 variant, despite decreased infection mediated by the parental SARS-CoV-2 spike. Our results clarify the relationship between ACE2 abundance, binding, and infection, for various SARS-like coronavirus spike proteins and their mutants, and inform our understanding for how changes to ACE2 sequence may correspond with different susceptibilities to infection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Edurne Rujas ◽  
Iga Kucharska ◽  
Yong Zi Tan ◽  
Samir Benlekbir ◽  
Hong Cui ◽  
...  

AbstractSARS-CoV-2, the virus responsible for COVID-19, has caused a global pandemic. Antibodies can be powerful biotherapeutics to fight viral infections. Here, we use the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 × 10−14 M are achieved as a result of up to 10,000-fold potency enhancements compared to corresponding IgGs. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and IgG-like bioavailability. The MULTi-specific, multi-Affinity antiBODY (Multabody or MB) platform thus uniquely leverages binding avidity together with multi-specificity to deliver ultrapotent and broad neutralizers against SARS-CoV-2. The modularity of the platform also makes it relevant for rapid evaluation against other infectious diseases of global health importance. Neutralizing antibodies are a promising therapeutic for SARS-CoV-2.


2021 ◽  
Author(s):  
Samaneh Farokhirad ◽  
Sreeja Kutti Kandy ◽  
Andrew Tsourkas ◽  
Portonovo Ayyaswamy ◽  
David Eckmann ◽  
...  

Abstract Physicochemical characteristics of nanoparticles (NPs) can be engineered for tuning their biological function in cellular delivery. How NP mechanical properties impact multivalent ligand-receptor mediated binding to cell surfaces, the avidity of NP adhesion to cells, propensity for internalization, and effects due to crowding remain unknown or unquantified. We report computational analyses of binding mechanisms of three distinct NPs that differ in type and rigidity (core-corona flexible NP, rigid NP, and rigid-tethered NP) but are otherwise similar in size and ligand surface density; moreover, for the case of flexible NP, we tune NP stiffness by varying the internal crosslinking density. We employ biophysical modeling of NP binding to membranes together with thermodynamic analysis powered by free energy calculations and show that efficient cellular targeting and uptake of NP functionalized with targeting ligand molecules can be shaped by factors including NP flexibility and crowding, receptor-ligand binding avidity, state of the membrane cytoskeleton, and curvature inducing proteins. Owing to this multitude of factors, we demonstrate that the binding avidity of a flexible NP depends on engineered changes in NP flexibility governed by significant enthalpy entropy compensations arising from multiple competing terms associated with NP, receptor density, and membrane. Analyses of the individual enthalpic and entropic contributions associated with NP, membrane, and receptor-ligand binding and receptor diffusion collectively illuminate this complex dependence of avidity on crosslinking. These findings provide strong evidence that NP flexibility is an important design parameter for rationally engineering NP targeting and uptake in a crowded cellular adhesion microenvironment.


Sign in / Sign up

Export Citation Format

Share Document